Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 224: 106130, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34536368

RESUMO

Assays for parasite detection in insect vectors provide important information for disease control. American Trypanosomiasis (Chagas disease) is the most devastating vector-borne illness and the fourth most common in Central America behind HIV/AIDS and acute respiratory and diarrheal infections (Peterson et al., 2019). Under-detection of parasites is a general problem which may be influenced by parasite genetic variation; however, little is known about the genetic variation of the Chagas parasite, especially in this region. In this study we compared six assays for detecting the Chagas parasite, Trypanosoma cruzi: genomic reduced representation sequencing (here referred to as genotype-by-sequencing or GBS), two with conventional PCR (i.e., agarose gel detection), two with qPCR, and microscopy. Our results show that, compared to GBS genomic analysis, microscopy and PCR under-detected T. cruzi in vectors from Central America. Of 94 samples, 44% (50/94) were positive based on genomic analysis. The lowest detection, 9% (3/32) was in a subset assayed with microscopy. Four PCR assays, two with conventional PCR and two with qPCR showed intermediate levels of detection. Both qPCR tests and one conventional PCR test targeted the 195 bp repeat of satellite DNA while the fourth test targeted the 18S gene. Statistical analyses of the genomic and PCR results indicate that the PCR assays significantly under detect infections of Central American T. cruzi genotypes.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , América Central , Doença de Chagas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Triatoma/genética , Trypanosoma cruzi/genética
2.
Front Genet ; 11: 658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655626

RESUMO

Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown. Here, using the model species Drosophila melanogaster, we used a combination of Genome Wide Association mapping (GWAS) and transcriptomic profiling to characterize whether genes associated with thermal tolerance are primarily involved in dynamic stress responses or preparatory processes that influence physiological condition at the time of thermal stress. To test our hypotheses, we measured the critical thermal minimum (CTmin) and critical thermal maximum (CTmax) of 100 lines of the Drosophila Genetic Reference Panel (DGRP) and used GWAS to identify loci that explain variation in thermal limits. We observed greater variation in lower thermal limits, with CTmin ranging from 1.81 to 8.60°C, while CTmax ranged from 38.74 to 40.64°C. We identified 151 and 99 distinct genes associated with CTmin and CTmax, respectively, and there was strong support that these genes are involved in both dynamic responses to thermal stress and preparatory processes that increase thermal resistance. Many of the genes identified by GWAS were involved in the direct transcriptional response to thermal stress (72/151 for cold; 59/99 for heat), and overall GWAS candidates were more likely to be differentially expressed than other genes. Further, several GWAS candidates were regulatory genes that may participate in the regulation of stress responses, and gene ontologies related to development and morphogenesis were enriched, suggesting many of these genes influence thermal tolerance through effects on development and physiological status. Overall, our results suggest that thermal tolerance alleles can influence both dynamic plastic responses to thermal stress and preparatory processes that improve thermal resistance. These results also have utility for directly comparing GWAS and transcriptomic approaches for identifying candidate genes associated with thermal tolerance.

3.
Mol Ecol ; 24(2): 374-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25496038

RESUMO

Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid-16th century when the Spanish connected the New World with Europe and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the world's most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S. geminata from Mexico via Manila to Taiwan and from there, throughout the Old World. Our descriptions of the worldwide spread of S. geminata represent a rare documented case of a biological invasion of a highly invasive and globally distributed pest species due to the earliest stages of global commerce.


Assuntos
Formigas/genética , Genética Populacional , Espécies Introduzidas , Animais , Teorema de Bayes , China , Análise por Conglomerados , Comércio , DNA Mitocondrial/genética , Feminino , Genótipo , México , Repetições de Microssatélites , Modelos Genéticos , Análise Multivariada , Filipinas , Filogenia , Análise de Sequência de DNA , Taiwan
4.
Infect Genet Evol ; 24: 157-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24681261

RESUMO

Phylogenetic relationships of insect vectors of parasitic diseases are important for understanding the evolution of epidemiologically relevant traits, and may be useful in vector control. The sub-family Triatominae (Hemiptera:Reduviidae) includes ∼140 extant species arranged in five tribes comprised of 15 genera. The genus Triatoma is the most species-rich and contains important vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Triatoma species were grouped into complexes originally by morphology and more recently with the addition of information from molecular phylogenetics (the four-complex hypothesis); however, without a strict adherence to monophyly. To date, the validity of proposed species complexes has not been tested by statistical tests of topology. The goal of this study was to clarify the systematics of 19 Triatoma species from North and Central America. We inferred their evolutionary relatedness using two independent data sets: the complete nuclear internal transcribed spacer-2 ribosomal DNA (ITS-2 rDNA) and head morphometrics. In addition, we used the Shimodaira-Hasegawa statistical test of topology to assess the fit of the data to a set of competing systematic hypotheses (topologies). An unconstrained topology inferred from the ITS-2 data was compared to topologies constrained based on the four-complex hypothesis or one inferred from our morphometry results. The unconstrained topology represents a statistically significant better fit of the molecular data than either the four-complex or the morphometric topology. We propose an update to the composition of species complexes in the North and Central American Triatoma, based on a phylogeny inferred from ITS-2 as a first step towards updating the phylogeny of the complexes based on monophyly and statistical tests of topologies.


Assuntos
Doença de Chagas/transmissão , DNA Espaçador Ribossômico/genética , Triatoma/classificação , Triatoma/genética , Animais , Sequência de Bases , Evolução Biológica , DNA Ribossômico/genética , Vetores de Doenças/classificação , Variação Genética , Insetos Vetores/classificação , Insetos Vetores/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Triatoma/parasitologia , Trypanosoma cruzi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA