Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Genes (Basel) ; 15(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39336765

RESUMO

Gene-based association analysis is a powerful tool for identifying genes that explain trait variability. An essential step of this analysis is a conditional analysis. It aims to eliminate the influence of SNPs outside the gene, which are in linkage disequilibrium with intragenic SNPs. The popular conditional analysis method, GCTA-COJO, accounts for the influence of several top independently associated SNPs outside the gene, correcting the z statistics for intragenic SNPs. We suggest a new TauCOR method for conditional gene-based analysis using summary statistics. This method accounts the influence of the full regional polygenic background, correcting the genotype correlations between intragenic SNPs. As a result, the distribution of z statistics for intragenic SNPs becomes conditionally independent of distribution for extragenic SNPs. TauCOR is compatible with any gene-based association test. TauCOR was tested on summary statistics simulated under different scenarios and on real summary statistics for a 'gold standard' gene list from the Open Targets Genetics project. TauCOR proved to be effective in all modelling scenarios and on real data. The TauCOR's strategy showed comparable sensitivity and higher specificity and accuracy than GCTA-COJO on both simulated and real data. The method can be successfully used to improve the effectiveness of gene-based association analyses.


Assuntos
Desequilíbrio de Ligação , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Herança Multifatorial/genética , Humanos , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Genótipo
2.
Genes (Basel) ; 14(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895311

RESUMO

Back pain (BP) is a major contributor to disability worldwide, with heritability estimated at 40-60%. However, less than half of the heritability is explained by common genetic variants identified by genome-wide association studies. More powerful methods and rare and ultra-rare variant analysis may offer additional insight. This study utilized exome sequencing data from the UK Biobank to perform a multi-trait gene-based association analysis of three BP-related phenotypes: chronic back pain, dorsalgia, and intervertebral disc disorder. We identified the SLC13A1 gene as a contributor to chronic back pain via loss-of-function (LoF) and missense variants. This gene has been previously detected in two studies. A multi-trait approach uncovered the novel FSCN3 gene and its impact on back pain through LoF variants. This gene deserves attention because it is only the second gene shown to have an effect on back pain due to LoF variants and represents a promising drug target for back pain therapy.


Assuntos
Exoma , Estudo de Associação Genômica Ampla , Humanos , Exoma/genética , Predisposição Genética para Doença , Fenótipo , Dor nas Costas/genética
3.
Animals (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611792

RESUMO

Negative heterosis can occur on different economically important traits, but the exact biological mechanisms of this phenomenon are still unknown. The present study focuses on determining the genetic factors associated with negative heterosis in interspecific hybrids between domestic sheep (Ovis aries) and argali (Ovis ammon). One locus (rs417431015) associated with viability and two loci (rs413302370, rs402808951) associated with meat productivity were identified. One gene (ARAP2) was prioritized for viability and three for meat productivity (PDE2A, ARAP1, and PCDH15). The loci associated with meat productivity were demonstrated to fit the overdominant inheritance model and could potentially be involved int negative heterosis mechanisms.

4.
Pain ; 164(4): 864-869, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448979

RESUMO

ABSTRACT: Back pain is the leading cause of years lived with disability worldwide, yet surprisingly, little is known regarding the biology underlying this condition. The impact of genetics is known for chronic back pain: its heritability is estimated to be at least 40%. Large genome-wide association studies have shown that common variation may account for up to 35% of chronic back pain heritability; rare variants may explain a portion of the heritability not explained by common variants. In this study, we performed the first gene-based association analysis of chronic back pain using UK Biobank imputed data including rare variants with moderate imputation quality. We discovered 2 genes, SOX5 and PANX3 , influencing chronic back pain. The SOX5 gene is a well-known back pain gene. The PANX3 gene has not previously been described as having a role in chronic back pain. We showed that the association of PANX3 with chronic back pain is driven by rare noncoding intronic polymorphisms. This result was replicated in an independent sample from UK Biobank and validated using a similar phenotype, dorsalgia, from FinnGen Biobank. We also found that the PANX3 gene is associated with intervertebral disk disorders. We can speculate that a possible mechanism of action of PANX3 on back pain is due to its effect on the intervertebral disks.


Assuntos
Dor nas Costas , Estudo de Associação Genômica Ampla , Humanos , Dor nas Costas/genética , Íntrons , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
Genes (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36292579

RESUMO

We propose a novel effective framework for the analysis of the shared genetic background for a set of genetically correlated traits using SNP-level GWAS summary statistics. This framework called SHAHER is based on the construction of a linear combination of traits by maximizing the proportion of its genetic variance explained by the shared genetic factors. SHAHER requires only full GWAS summary statistics and matrices of genetic and phenotypic correlations between traits as inputs. Our framework allows both shared and unshared genetic factors to be effectively analyzed. We tested our framework using simulation studies, compared it with previous developments, and assessed its performance using three real datasets: anthropometric traits, psychiatric conditions and lipid concentrations. SHAHER is versatile and applicable to summary statistics from GWASs with arbitrary sample sizes and sample overlaps, allows for the incorporation of different GWAS models (Cox, linear and logistic), and is computationally fast.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Patrimônio Genético , Lipídeos
6.
PLoS Comput Biol ; 18(6): e1010172, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653402

RESUMO

Gene-based association analysis is an effective gene-mapping tool. Many gene-based methods have been proposed recently. However, their power depends on the underlying genetic architecture, which is rarely known in complex traits, and so it is likely that a combination of such methods could serve as a universal approach. Several frameworks combining different gene-based methods have been developed. However, they all imply a fixed set of methods, weights and functional annotations. Moreover, most of them use individual phenotypes and genotypes as input data. Here, we introduce sumSTAAR, a framework for gene-based association analysis using summary statistics obtained from genome-wide association studies (GWAS). It is an extended and modified version of STAAR framework proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range of gene-based methods to combine. It allows the user to arbitrarily define a set of these methods, weighting functions and probabilities of genetic variants being causal. The methods used in the framework were adapted to analyse genes with large number of SNPs to decrease the running time. The framework includes the polygene pruning procedure to guard against the influence of the strong GWAS signals outside the gene. We also present new improved matrices of correlations between the genotypes of variants within genes. These matrices estimated on a sample of 265,000 individuals are a state-of-the-art replacement of widely used matrices based on the 1000 Genomes Project data.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Estudos de Associação Genética , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
7.
Eur J Hum Genet ; 29(7): 1082-1091, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33664501

RESUMO

Adult height inspired the first biometrical and quantitative genetic studies and is a test-case trait for understanding heritability. The studies of height led to formulation of the classical polygenic model, that has a profound influence on the way we view and analyse complex traits. An essential part of the classical model is an assumption of additivity of effects and normality of the distribution of the residuals. However, it may be expected that the normal approximation will become insufficient in bigger studies. Here, we demonstrate that when the height of hundreds of thousands of individuals is analysed, the model complexity needs to be increased to include non-additive interactions between sex, environment and genes. Alternatively, the use of log-normal approximation allowed us to still use the additive effects model. These findings are important for future genetic and methodologic studies that make use of adult height as an exemplar trait.


Assuntos
Estatura , Característica Quantitativa Herdável , Valores de Referência , Adulto , Algoritmos , Bancos de Espécimes Biológicos , Estatura/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Modelos Genéticos , Herança Multifatorial , Vigilância da População , Reino Unido
8.
Sci Rep ; 11(1): 2484, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510330

RESUMO

Neuroticism is a personality trait, which is an important risk factor for psychiatric disorders. Recent genome-wide studies reported about 600 genes potentially influencing neuroticism. Little is known about the mechanisms of their action. Here, we aimed to conduct a more detailed analysis of genes that can regulate the level of neuroticism. Using UK Biobank-based GWAS summary statistics, we performed a gene-based association analysis using four sets of within-gene variants, each set possessing specific protein-coding properties. To guard against the influence of strong GWAS signals outside the gene, we used a specially designed procedure called "polygene pruning". As a result, we identified 190 genes associated with neuroticism due to the effect of within-gene variants rather than strong GWAS signals outside the gene. Thirty eight of these genes are new. Within all genes identified, we distinguished two slightly overlapping groups obtained from using protein-coding and non-coding variants. Many genes in the former group included potentially pathogenic variants. For some genes in the latter group, we found evidence of pleiotropy with gene expression. Using a bioinformatics analysis, we prioritized the neuroticism genes and showed that the genes that contribute to neuroticism through their within-gene variants are the most appropriate candidate genes.


Assuntos
Transtornos Mentais/genética , Herança Multifatorial , Neuroticismo , Polimorfismo de Nucleotídeo Único , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
9.
Bioinformatics ; 35(19): 3701-3708, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860568

RESUMO

MOTIVATION: A huge number of genome-wide association studies (GWAS) summary statistics freely available in databases provide a new material for gene-based association analysis aimed at identifying rare genetic variants. Only a few of the many popular gene-based methods developed for individual genotype and phenotype data are adapted for the practical use of the GWAS summary statistics as input. RESULTS: We analytically prove and numerically illustrate that all popular powerful methods developed for gene-based association analysis of individual phenotype and genotype data can be modified to utilize GWAS summary statistics. We have modified and implemented all of the popular methods, including burden and kernel machine-based tests, multiple and functional linear regression, principal components analysis and others, in the R package sumFREGAT. Using real summary statistics for coronary artery disease, we show that the new package is able to detect genes not found by the existing packages. AVAILABILITY AND IMPLEMENTATION: The R package sumFREGAT is freely and publicly available at: https://CRAN.R-project.org/package=sumFREGAT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Software , Genótipo , Modelos Lineares , Fenótipo
10.
BMC Med Genomics ; 11(1): 22, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506515

RESUMO

BACKGROUND: Electrocardiographic measures of left ventricular hypertrophy (LVH) are used as predictors of cardiovascular risk. We combined linkage and association analyses to discover novel rare genetic variants involved in three such measures and two principal components derived from them. METHODS: The study was conducted among participants from the Erasmus Rucphen Family Study (ERF), a Dutch family-based sample from the southwestern Netherlands. Variance components linkage analyses were performed using Merlin. Regions of interest (LOD > 1.9) were fine-mapped using microarray and exome sequence data. RESULTS: We observed one significant LOD score for the second principal component on chromosome 15 (LOD score = 3.01) and 12 suggestive LOD scores. Several loci contained variants identified in GWAS for these traits; however, these did not explain the linkage peaks, nor did other common variants. Exome sequence data identified two associated variants after multiple testing corrections were applied. CONCLUSIONS: We did not find common SNPs explaining these linkage signals. Exome sequencing uncovered a relatively rare variant in MAPK3K11 on chromosome 11 (MAF = 0.01) that helped account for the suggestive linkage peak observed for the first principal component. Conditional analysis revealed a drop in LOD from 2.01 to 0.88 for MAP3K11, suggesting that this variant may partially explain the linkage signal at this chromosomal location. MAP3K11 is related to the JNK pathway and is a pro-apoptotic kinase that plays an important role in the induction of cardiomyocyte apoptosis in various pathologies, including LVH.


Assuntos
Sequenciamento do Exoma , Ligação Genética , Hipertrofia Ventricular Esquerda/genética , MAP Quinase Quinase Quinases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Eletrocardiografia , Feminino , Genótipo , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
11.
PLoS One ; 13(1): e0190486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29309409

RESUMO

Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P < 0.1 in at least one analysis had lower P values with weighted models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Humanos , Análise de Regressão
12.
Biol Psychiatry ; 81(8): 702-707, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27745872

RESUMO

BACKGROUND: Despite high heritability, little success was achieved in mapping genetic determinants of depression-related traits by means of genome-wide association studies. METHODS: To identify genes associated with depressive symptomology, we performed a gene-based association analysis of nonsynonymous variation captured using exome-sequencing and exome-chip genotyping in a genetically isolated population from the Netherlands (n = 1999). Finally, we reproduced our significant findings in an independent population-based cohort (n = 1604). RESULTS: We detected significant association of depressive symptoms with a gene NKPD1 (p = 3.7 × 10-08). Nonsynonymous variants in the gene explained 0.9% of sex- and age-adjusted variance of depressive symptoms in the discovery study, which is translated into 3.8% of the total estimated heritability (h2 = 0.24). Significant association of depressive symptoms with NKPD1 was also observed (n = 1604; p = 1.5 × 10-03) in the independent replication sample despite little overlap with the discovery cohort in the set of nonsynonymous genetic variants observed in the NKPD1 gene. Meta-analysis of the discovery and replication studies improved the association signal (p = 1.0 × 10-09). CONCLUSIONS: Our study suggests that nonsynonymous variation in the gene NKPD1 affects depressive symptoms in the general population. NKPD1 is predicted to be involved in the de novo synthesis of sphingolipids, which have been implicated in the pathogenesis of depression.


Assuntos
Depressão/genética , Transtorno Depressivo Maior/genética , Nucleosídeo-Trifosfatase/genética , Exoma , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Países Baixos , Polimorfismo de Nucleotídeo Único , População Branca/genética
13.
Front Genet ; 7: 190, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877193

RESUMO

Electrocardiogram (ECG) measurements play a key role in the diagnosis and prediction of cardiac arrhythmias and sudden cardiac death. ECG parameters, such as the PR, QRS, and QT intervals, are known to be heritable and genome-wide association studies of these phenotypes have been successful in identifying common variants; however, a large proportion of the genetic variability of these traits remains to be elucidated. The aim of this study was to discover loci potentially harboring rare variants utilizing variance component linkage analysis in 1547 individuals from a large family-based study, the Erasmus Rucphen Family Study (ERF). Linked regions were further explored using exome sequencing. Five suggestive linkage peaks were identified: two for QT interval (1q24, LOD = 2.63; 2q34, LOD = 2.05), one for QRS interval (1p35, LOD = 2.52) and two for PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29). Fine-mapping using exome sequence data identified a C > G missense variant (c.713C > G, p.Ser238Cys) in the FCRL2 gene associated with QT (rs74608430; P = 2.8 × 10-4, minor allele frequency = 0.019). Heritability analysis demonstrated that the SNP explained 2.42% of the trait's genetic variability in ERF (P = 0.02). Pathway analysis suggested that the gene is involved in cytosolic Ca2+ levels (P = 3.3 × 10-3) and AMPK stimulated fatty acid oxidation in muscle (P = 4.1 × 10-3). Look-ups in bioinformatics resources showed that expression of FCRL2 is associated with ARHGAP24 and SETBP1 expression. This finding was not replicated in the Rotterdam study. Combining the bioinformatics information with the association and linkage analyses, FCRL2 emerges as a strong candidate gene for QT interval.

14.
Bioinformatics ; 32(15): 2392-3, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153598

RESUMO

UNLABELLED: Several approaches to the region-based association analysis of quantitative traits have recently been developed and successively applied. However, no software package has been developed that implements all of these approaches for either independent or structured samples. Here we introduce FREGAT (Family REGional Association Tests), an R package that can handle family and population samples and implements a wide range of region-based association methods including burden tests, functional linear models, and kernel machine-based regression. FREGAT can be used in genome/exome-wide region-based association studies of quantitative traits and candidate gene analysis. FREGAT offers many useful options to empower its users and increase the effectiveness and applicability of region-based association analysis. AVAILABILITY AND IMPLEMENTATION: https://cran.r-project.org/web/packages/FREGAT/index.html SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online. CONTACT: belon@bionet.nsc.ru.


Assuntos
Exoma , Modelos Lineares , Software , Humanos
15.
PLoS One ; 10(6): e0128999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111046

RESUMO

Region-based association analysis is a more powerful tool for gene mapping than testing of individual genetic variants, particularly for rare genetic variants. The most powerful methods for regional mapping are based on the functional data analysis approach, which assumes that the regional genome of an individual may be considered as a continuous stochastic function that contains information about both linkage and linkage disequilibrium. Here, we extend this powerful approach, earlier applied only to independent samples, to the samples of related individuals. To this end, we additionally include a random polygene effects in functional linear model used for testing association between quantitative traits and multiple genetic variants in the region. We compare the statistical power of different methods using Genetic Analysis Workshop 17 mini-exome family data and a wide range of simulation scenarios. Our method increases the power of regional association analysis of quantitative traits compared with burden-based and kernel-based methods for the majority of the scenarios. In addition, we estimate the statistical power of our method using regions with small number of genetic variants, and show that our method retains its advantage over burden-based and kernel-based methods in this case as well. The new method is implemented as the R-function 'famFLM' using two types of basis functions: the B-spline and Fourier bases. We compare the properties of the new method using models that differ from each other in the type of their function basis. The models based on the Fourier basis functions have an advantage in terms of speed and power over the models that use the B-spline basis functions and those that combine B-spline and Fourier basis functions. The 'famFLM' function is distributed under GPLv3 license and is freely available at http://mga.bionet.nsc.ru/soft/famFLM/.


Assuntos
Estudos de Associação Genética/métodos , Modelos Lineares , Variação Genética , Genoma Humano , Humanos , Desequilíbrio de Ligação
16.
PLoS One ; 9(6): e99407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905468

RESUMO

The kernel machine-based regression is an efficient approach to region-based association analysis aimed at identification of rare genetic variants. However, this method is computationally complex. The running time of kernel-based association analysis becomes especially long for samples with genetic (sub) structures, thus increasing the need to develop new and effective methods, algorithms, and software packages. We have developed a new R-package called fast family-based sequence kernel association test (FFBSKAT) for analysis of quantitative traits in samples of related individuals. This software implements a score-based variance component test to assess the association of a given set of single nucleotide polymorphisms with a continuous phenotype. We compared the performance of our software with that of two existing software for family-based sequence kernel association testing, namely, ASKAT and famSKAT, using the Genetic Analysis Workshop 17 family sample. Results demonstrate that FFBSKAT is several times faster than other available programs. In addition, the calculations of the three-compared software were similarly accurate. With respect to the available analysis modes, we combined the advantages of both ASKAT and famSKAT and added new options to empower FFBSKAT users. The FFBSKAT package is fast, user-friendly, and provides an easy-to-use method to perform whole-exome kernel machine-based regression association analysis of quantitative traits in samples of related individuals. The FFBSKAT package, along with its manual, is available for free download at http://mga.bionet.nsc.ru/soft/FFBSKAT/.


Assuntos
Exoma , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Análise de Sequência de DNA/métodos , Software
17.
PLoS One ; 8(12): e81431, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358113

RESUMO

Genome-wide association studies (GWAS) comprise a powerful tool for mapping genes of complex traits. However, an inflation of the test statistic can occur because of population substructure or cryptic relatedness, which could cause spurious associations. If information on a large number of genetic markers is available, adjusting the analysis results by using the method of genomic control (GC) is possible. GC was originally proposed to correct the Cochran-Armitage additive trend test. For non-additive models, correction has been shown to depend on allele frequencies. Therefore, usage of GC is limited to situations where allele frequencies of null markers and candidate markers are matched. In this work, we extended the capabilities of the GC method for non-additive models, which allows us to use null markers with arbitrary allele frequencies for GC. Analytical expressions for the inflation of a test statistic describing its dependency on allele frequency and several population parameters were obtained for recessive, dominant, and over-dominant models of inheritance. We proposed a method to estimate these required population parameters. Furthermore, we suggested a GC method based on approximation of the correction coefficient by a polynomial of allele frequency and described procedures to correct the genotypic (two degrees of freedom) test for cases when the model of inheritance is unknown. Statistical properties of the described methods were investigated using simulated and real data. We demonstrated that all considered methods were effective in controlling type 1 error in the presence of genetic substructure. The proposed GC methods can be applied to statistical tests for GWAS with various models of inheritance. All methods developed and tested in this work were implemented using R language as a part of the GenABEL package.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Genoma , Genômica/métodos , Modelos Genéticos , Simulação por Computador , Bases de Dados Genéticas , Frequência do Gene , Genótipo , Humanos
18.
PLoS One ; 8(6): e65395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799013

RESUMO

Regional-based association analysis instead of individual testing of each SNP was introduced in genome-wide association studies to increase the power of gene mapping, especially for rare genetic variants. For regional association tests, the kernel machine-based regression approach was recently proposed as a more powerful alternative to collapsing-based methods. However, the vast majority of existing algorithms and software for the kernel machine-based regression are applicable only to unrelated samples. In this paper, we present a new method for the kernel machine-based regression association analysis of quantitative traits in samples of related individuals. The method is based on the GRAMMAR+ transformation of phenotypes of related individuals, followed by use of existing kernel machine-based regression software for unrelated samples. We compared the performance of kernel-based association analysis on the material of the Genetic Analysis Workshop 17 family sample and real human data by using our transformation, the original untransformed trait, and environmental residuals. We demonstrated that only the GRAMMAR+ transformation produced type I errors close to the nominal value and that this method had the highest empirical power. The new method can be applied to analysis of related samples by using existing software for kernel-based association analysis developed for unrelated samples.


Assuntos
Locos de Características Quantitativas , Algoritmos , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
Eur J Hum Genet ; 21(8): 876-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23211697

RESUMO

Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10(-06), KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene.


Assuntos
Mapeamento Cromossômico/métodos , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Personalidade/genética , Cromossomos Humanos Par 11/genética , Humanos , Escore Lod , Inventário de Personalidade , Fenótipo , Polimorfismo de Nucleotídeo Único , Canais de Potássio Corretores do Fluxo de Internalização/genética
20.
Nat Genet ; 44(10): 1166-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22983301

RESUMO

The variance component tests used in genome-wide association studies (GWAS) including large sample sizes become computationally exhaustive when the number of genetic markers is over a few hundred thousand. We present an extremely fast variance components-based two-step method, GRAMMAR-Gamma, developed as an analytical approximation within a framework of the score test approach. Using simulated and real human GWAS data sets, we show that this method provides unbiased estimates of the SNP effect and has a power close to that of the likelihood ratio test-based method. The computational complexity of our method is close to its theoretical minimum, that is, to the complexity of the analysis that ignores genetic structure. The running time of our method linearly depends on sample size, whereas this dependency is quadratic for other existing methods. Simulations suggest that GRAMMAR-Gamma may be used for association testing in whole-genome resequencing studies of large human cohorts.


Assuntos
Simulação por Computador , Estudo de Associação Genômica Ampla , Modelos Genéticos , Algoritmos , Arabidopsis/genética , Marcadores Genéticos , Humanos , Funções Verossimilhança , Modelos Lineares , Distribuição Normal , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA