Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 152503, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682970

RESUMO

The first complete measurement of the ß-decay strength distribution of _{17}^{45}Cl_{28} was performed at the Facility for Rare Isotope Beams (FRIB) with the FRIB Decay Station Initiator during the second FRIB experiment. The measurement involved the detection of neutrons and γ rays in two focal planes of the FRIB Decay Station Initiator in a single experiment for the first time. This enabled an analytical consistency in extracting the ß-decay strength distribution over the large range of excitation energies, including neutron unbound states. We observe a rapid increase in the ß-decay strength distribution above the neutron separation energy in _{18}^{45}Ar_{27}. This was interpreted to be caused by the transitioning of neutrons into protons excited across the Z=20 shell gap. The SDPF-MU interaction with reduced shell gap best reproduced the data. The measurement demonstrates a new approach that is sensitive to the proton shell gap in neutron rich nuclei according to SDPF-MU calculations.

2.
Phys Rev Lett ; 127(20): 202501, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860042

RESUMO

Two long-standing puzzles in the decay of ^{185}Bi, the heaviest known proton-emitting nucleus are revisited. These are the nonobservation of the 9/2^{-} state, which is the ground state of all heavier odd-A Bi isotopes, and the hindered nature of proton and α decays of its presumed 60-µs 1/2^{+} ground state. The ^{185}Bi nucleus has now been studied with the ^{95}Mo(^{93}Nb,3n) reaction in complementary experiments using the Fragment Mass Analyzer and Argonne Gas-Filled Analyzer at Argonne National Laboratory's ATLAS facility. The experiments have established the existence of two states in ^{185}Bi; the short-lived T_{1/2}=2.8_{-1.0}^{+2.3} µs, proton- and α-decaying ground state, and a 58(2)-µs γ-decaying isomer, the half-life of which was previously attributed to the ground state. The reassignment of the ground-state lifetime results in a proton-decay spectroscopic factor close to unity and represents the only known example of a ground-state proton decay to a daughter nucleus (^{184}Pb) with a major shell closure. The data also demonstrate that the ordering of low- and high-spin states in ^{185}Bi is reversed relative to the heavier odd-A Bi isotopes, with the intruder-based 1/2^{+} configuration becoming the ground, similar to the lightest At nuclides.

3.
Phys Rev Lett ; 127(13): 139902, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623869

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.114.082501.

4.
Phys Rev Lett ; 125(10): 102502, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955302

RESUMO

The low-spin structure of the semimagic ^{64}Ni nucleus has been considerably expanded: combining four experiments, several 0^{+} and 2^{+} excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0^{+} excitation is located at a surprisingly high energy (3463 keV), with a collective 2^{+} state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N=40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N.

5.
Phys Rev Lett ; 124(5): 052501, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083900

RESUMO

The rare phenomenon of nuclear wobbling motion has been investigated in the nucleus ^{187}Au. A longitudinal wobbling-bands pair has been identified and clearly distinguished from the associated signature-partner band on the basis of angular distribution measurements. Theoretical calculations in the framework of the particle rotor model are found to agree well with the experimental observations. This is the first experimental evidence for longitudinal wobbling bands where the expected signature partner band has also been identified, and establishes this exotic collective mode as a general phenomenon over the nuclear chart.

6.
Phys Rev Lett ; 123(10): 102501, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573317

RESUMO

An extensive, model-independent analysis of the nature of triaxial deformation in ^{76}Ge, a candidate for neutrinoless double-beta (0νßß) decay, was carried out following multistep Coulomb excitation. Shape parameters deduced on the basis of a rotational-invariant sum-rule analysis provided considerable insight into the underlying collectivity of the ground-state and γ bands. Both sequences were determined to be characterized by the same ß and γ deformation parameter values. In addition, compelling evidence for low-spin, rigid triaxial deformation in ^{76}Ge was obtained for the first time from the analysis of the statistical fluctuations of the quadrupole asymmetry deduced from the measured E2 matrix elements. These newly determined shape parameters are important input and constraints for calculations aimed at providing, with suitable accuracy, the nuclear matrix elements relevant to 0νßß.

7.
Phys Rev Lett ; 122(5): 052701, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822026

RESUMO

Detection of nuclear-decay γ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense γ-ray flux is thought to be annihilation radiation from the ß^{+} decay of ^{18}F, which is destroyed prior to decay by the ^{18}F(p,α)^{15}O reaction. Estimates of ^{18}F production had been uncertain, however, because key near-threshold levels in the compound nucleus, ^{19}Ne, had yet to be identified. We report the first measurement of the ^{19}F(^{3}He,tγ)^{19}Ne reaction, in which the placement of two long-sought 3/2^{+} levels is suggested via triton-γ-γ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of 1.5-17 at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.

8.
Phys Rev Lett ; 121(18): 182501, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444390

RESUMO

We report the first observation of the ^{108}Xe→^{104}Te→^{100}Sn α-decay chain. The α emitters, ^{108}Xe [E_{α}=4.4(2) MeV, T_{1/2}=58_{-23}^{+106} µs] and ^{104}Te [E_{α}=4.9(2) MeV, T_{1/2}<18 ns], decaying into doubly magic ^{100}Sn were produced using a fusion-evaporation reaction ^{54}Fe(^{58}Ni,4n)^{108}Xe, and identified with a recoil mass separator and an implantation-decay correlation technique. This is the first time α radioactivity has been observed to a heavy self-conjugate nucleus. A previous benchmark for study of this fundamental decay mode has been the decay of ^{212}Po into doubly magic ^{208}Pb. Enhanced proton-neutron interactions in the N=Z parent nuclei may result in superallowed α decays with reduced α-decay widths significantly greater than that for ^{212}Po. From the decay chain, we deduce that the α-reduced width for ^{108}Xe or ^{104}Te is more than a factor of 5 larger than that for ^{212}Po.

9.
Phys Rev Lett ; 120(21): 212501, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883168

RESUMO

A sequence of low-energy levels in _{32}^{78}Ge_{46} has been identified with spins and parity of 2^{+}, 3^{+}, 4^{+}, 5^{+}, and 6^{+}. Decays within this band proceed strictly through ΔJ=1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2^{+} level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ-rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the ΔJ=2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ=30°, there are sequences of higher-spin levels connected by strong ΔJ=1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.

10.
Phys Rev Lett ; 120(18): 182502, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775351

RESUMO

The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at A∼160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2^{+} levels in some even-even nuclei at N=98. In order to address these issues, mass and ß-decay spectroscopy measurements of the ^{160}Eu_{97} and ^{162}Eu_{99} nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (ß_{2}∼0.3) is discussed in relation to the unusual phenomena observed at this neutron number.

11.
Phys Rev Lett ; 120(12): 122503, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694087

RESUMO

A beam containing a substantial component of both the J^{π}=5^{+}, T_{1/2}=162 ns isomeric state of ^{18}F and its 1^{+}, 109.77-min ground state is utilized to study members of the ground-state rotational band in ^{19}F through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2^{+} band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

12.
Phys Rev Lett ; 119(7): 072701, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949677

RESUMO

The existence of ^{26}Al (t_{1/2}=7.17×10^{5} yr) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0^{+} isomer (^{26}Al^{m}), however, severely complicates the astrophysical calculations. We present for the first time a study of the ^{26}Al^{m}(d,p)^{27}Al reaction using an isomeric ^{26}Al beam. The selectivity of this reaction allowed the study of ℓ=0 transfers to T=1/2, and T=3/2 states in ^{27}Al. Mirror symmetry arguments were then used to constrain the ^{26}Al^{m}(p,γ)^{27}Si reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric ^{26}Al via radiative proton capture reactions, which is expected to dominate the destruction path of ^{26}Al^{m} in asymptotic giant branch stars, classical novae, and core collapse supernovae.

13.
Phys Rev Lett ; 118(15): 152504, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452498

RESUMO

Despite the more than 1 order of magnitude difference between the measured dipole moments in ^{144}Ba and ^{146}Ba, the octupole correlations in ^{146}Ba are found to be as strong as those in ^{144}Ba with a similarly large value of B(E3;3^{-}→0^{+}) determined as 48(+21-29) W.u. The new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopic calculations.

14.
Phys Rev Lett ; 116(11): 112503, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035298

RESUMO

The neutron-rich nucleus ^{144}Ba (t_{1/2}=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV ^{144}Ba beam on a 1.0-mg/cm^{2} ^{208}Pb target. The measured value of the matrix element, ⟨3_{1}^{-}∥M(E3)∥0_{1}^{+}⟩=0.65(+17/-23) eb^{3/2}, corresponds to a reduced B(E3) transition probability of 48(+25/-34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

15.
Phys Rev Lett ; 114(25): 251102, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197115

RESUMO

Neutrons produced by the carbon fusion reaction (12)C((12)C,n)(23)Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction (12)C((12)C,p)(23)Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that (12)C((12)C,n)(23)Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s-process elements, as well as in the production of the important galactic γ-ray emitter (60)Fe.

16.
Phys Rev Lett ; 114(8): 082501, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768759

RESUMO

A pair of transverse wobbling bands is observed in the nucleus ^{135}Pr. The wobbling is characterized by ΔI=1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model.

17.
Phys Rev Lett ; 110(17): 172504, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679714

RESUMO

Two distinct sets of chiral-partner bands have been identified in the nucleus 133Ce. They constitute a multiple chiral doublet, a phenomenon predicted by relativistic mean field (RMF) calculations and observed experimentally here for the first time. The properties of these chiral bands are in good agreement with results of calculations based on a combination of the constrained triaxial RMF theory and the particle-rotor model.

18.
Phys Rev Lett ; 110(10): 102501, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521253

RESUMO

Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA