Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107921, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841597

RESUMO

Metabolism and energy processes governing oligodendrocyte function during neuroinflammatory disease are of great interest. However, how varied cellular environments affect oligodendrocyte activity during neuroinflammation is unknown. We demonstrate that activated microglial energy metabolism controls oligodendrocyte mitochondrial respiration and activity. Lipopolysaccharide/interferon gamma promote glycolysis and decrease mitochondrial respiration and myelin protein synthesis in rat brain glial cells. Enriched microglia showed an early burst in glycolysis. In microglia-conditioned medium, oligodendrocytes did not respire and expressed less myelin. SCENITH revealed metabolic derangement in microglia and O4-positive oligodendrocytes in endotoxemia and experimental autoimmune encephalitogenic models. The early burst of glycolysis in microglia was mediated by PDPK1 and protein kinase B/AKT signaling. We found that microglia-produced NO and itaconate, a tricarboxylic acid bifurcated metabolite, reduced mitochondrial respiration in oligodendrocytes. During inflammation, we discovered a signaling pathway in microglia that could be used as a therapeutic target to restore mitochondrial function in oligodendrocytes and induce remyelination.

2.
bioRxiv ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38234838

RESUMO

Pathogenic Th17 cells are crucial to CNS autoimmune diseases like multiple sclerosis (MS), though their control by endogenous mechanisms is unknown. RNAseq analysis of brain glial cells identified immuno-responsive gene 1 (Irg1), a mitochondrial-related enzyme-coding gene, as one of the highly upregulated gene under inflammatory conditions which were further validated in the spinal cord of animals with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Moreover, Irg1 mRNA and protein levels in myeloid, CD4, and B cells were higher in the EAE group, raising questions about its function in CNS autoimmunity. We observed that Irg1 knockout (KO) mice exhibited severe EAE disease and greater mononuclear cell infiltration, including triple-positive CD4 cells expressing IL17a, GM-CSF, and IFNγ. Lack of Irg1 in macrophages led to higher levels of Class II expression and polarized myelin primed CD4 cells into pathogenic Th17 cells through the NLRP3/IL1ß axis. Our findings show that Irg1 in macrophages plays an important role in the formation of pathogenic Th17 cells, emphasizing its potential as a therapy for autoimmune diseases, including MS.

3.
Front Cardiovasc Med ; 8: 669975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136546

RESUMO

Chronic hypoxic stress induces epigenetic modifications mainly DNA methylation in cardiac fibroblasts, inactivating tumor suppressor genes (RASSF1A) and activating kinases (ERK1/2) leading to fibroblast proliferation and cardiac fibrosis. The Ras/ERK signaling pathway is an intracellular signal transduction critically involved in fibroblast proliferation. RASSF1A functions through its effect on downstream ERK1/2. The antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), decreases oxidative stress from chronic hypoxia, but its effects on these epigenetic changes have not been fully explored. To test our hypothesis, we used an in-vitro model: wild-type C57B6 male mice (WT) and transgenic males with an extra copy of human hEC-SOD (TG). The studied animals were housed in hypoxia (10% O2) for 21 days. The right ventricular tissue was studied for cardiac fibrosis markers using RT-PCR and Western blot analyses. Primary C57BL6 mouse cardiac fibroblast tissue culture was used to study the in-vitro model, the downstream effects of RASSF-1 expression and methylation, and its relation to ERK1/2. Our findings showed a significant increase in cardiac fibrosis markers: Collagen 1, alpha smooth muscle actin (ASMA), and SNAIL, in the WT hypoxic animals as compared to the TG hypoxic group (p < 0.05). The expression of DNA methylation enzymes (DNMT 1&3b) was significantly increased in the WT hypoxic mice as compared to the hypoxic TG mice (p < 0.001). RASSF1A expression was significantly lower and ERK1/2 was significantly higher in hypoxia WT compared to the hypoxic TG group (p < 0.05). Use of SiRNA to block RASSF1A gene expression in murine cardiac fibroblast tissue culture led to increased fibroblast proliferation (p < 0.05). Methylation of the RASSF1A promoter region was significantly reduced in the TG hypoxic group compared to the WT hypoxic group (0.59 vs. 0.75, respectively). Based on our findings, we can speculate that EC-SOD significantly attenuates RASSF1A gene methylation and can alleviate cardiac fibrosis induced by hypoxia.

4.
J Mol Biol ; 427(20): 3201-3215, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26210663

RESUMO

HIV (human immunodeficiency virus) has been reported to induce podocyte injury through down regulation of vitamin D receptor (VDR) and activation of renin angiotensin system; however, the involved mechanism is not clear. Since HIV has been reported to modulate gene expression via epigenetic phenomena, we asked whether epigenetic factors contribute to down regulation of VDR. Kidney cells in HIV transgenic mice and HIV-infected podocytes (HIV/HPs) displayed enhanced expression of SNAIL, a repressor of VDR. To elucidate the mechanism, we studied the effect of HIV on expression of molecules involved in SNAIL repressor complex formation and demonstrated that HIV enhances expression of the histone deacetylase HDAC1 and DNA methyl transferases DNMT3b and DNMT1. 293T cells, when stably transfected with SNAIL (SNAIL/293T), displayed suppressed transcription and translation of VDR. In SNAIL/293T cells, co-immunoprecipitation studies revealed the association of HDAC1, DNMT3b, DNMT1, and mSin3A with SNAIL. Chromatin immunoprecipitation experiments confirmed the presence of the SNAIL repressor complex at the VDR promoter. Consistent with the enhanced DNA methyl transferase expression in HIV/HPs, there was an increased CpG methylation at the VDR promoter. Chromatin immunoprecipitation assay confirmed occurrence of H3K4 trimethylation on SNAIL promoter. Neither a VDR agonist (VDA) nor an HDAC inhibitor (HDACI) nor a demethylating agent (DAC) individually could optimally up regulate VDR in HIV milieu. However, VDA and HDACI when combined were successful in de-repressing VDR expression. Our findings demonstrate that SNAIL recruits multiple chromatin enzymes to form a repressor complex in HIV milieu that down regulates VDR expression.


Assuntos
Metilação de DNA/genética , Podócitos/metabolismo , Receptores de Calcitriol/biossíntese , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/biossíntese , Ativação Enzimática , Células HEK293 , HIV/genética , Infecções por HIV/genética , Histona Desacetilase 1/biossíntese , Histonas/metabolismo , Humanos , Rim/citologia , Camundongos , Camundongos Transgênicos , Podócitos/virologia , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Receptores de Calcitriol/metabolismo , Sistema Renina-Angiotensina/fisiologia , Proteínas Repressoras/biossíntese , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , DNA Metiltransferase 3B
5.
F1000Res ; 4: 103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26949515

RESUMO

Huntington ´s disease (HD) is a progressive, neurodegenerative disease with a fatal outcome. Although the disease-causing gene (huntingtin) has been known for over 20 years, the exact mechanisms leading to neuronal cell death are still controversial. One potential mechanism contributing to the massive loss of neurons observed in the brain of HD patients could be the unfolded protein response (UPR) activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). As an adaptive response to counter-balance accumulation of un- or misfolded proteins, the UPR upregulates transcription of chaperones, temporarily attenuates new translation, and activates protein degradation via the proteasome. However, persistent ER stress and an activated UPR can also cause apoptotic cell death. Although different studies have indicated a role for the UPR in HD, the evidence remains inconclusive. Here, we present extensive bioinformatic analyses that revealed UPR activation in different experimental HD models based on transcriptomic data. Accordingly, we have identified 53 genes, including RAB5A, HMGB1, CTNNB1, DNM1, TUBB, TSG101, EEF2, DYNC1H1, SLC12A5, ATG5, AKT1, CASP7 and SYVN1 that provide a potential link between UPR and HD. To further elucidate the potential role of UPR as a disease-relevant process, we examined its connection to apoptosis based on molecular interaction data, and identified a set of 40 genes including ADD1, HSP90B1, IKBKB, IKBKG, RPS3A and LMNB1, which seem to be at the crossroads between these two important cellular processes. Remarkably, we also found strong correlation of UPR gene expression with the length of the polyglutamine tract of Huntingtin, which is a critical determinant of age of disease onset in human HD patients pointing to the UPR as a promising target for therapeutic intervention. The study is complemented by a newly developed web-portal called UPR-HD (http://uprhd.sysbiolab.eu) that enables visualization and interactive analysis of UPR-associated gene expression across various HD models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA