Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Ecol ; 33(2): e16933, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36942798

RESUMO

In Atlantic salmon, age at maturation is a life history trait governed by a sex-specific trade-off between reproductive success and survival. Following environmental changes across large areas of the Northeast Atlantic, many populations currently display smaller size at age and higher age at maturation. However, whether these changes reflect rapid evolution or plasticity is unknown. Approximately 1500 historical and contemporary salmon from the river Etne in Western Norway, genotyped at 50,000 SNPs, revealed three loci associated with age at maturation. These included vgll3 and six6 which collectively explained 36%-50% of the age at maturation variation in the 1983-1984 period. These two loci also displayed sex-specific epistasis, as the effect of six6 was only detected in males bearing two copies of the late maturation allele for vgll3. Strikingly, despite allelic frequencies at vgll3 remaining unchanged, the combined influence of these genes was nearly absent in all samples from 2013 to 2016, and genome-wide heritability strongly declined between the two time-points. The difference in age at maturation between males and females was upheld in the population despite the loss of effect from the candidate loci, which strongly points towards additional causative mechanisms resolving the sexual conflict. Finally, because admixture with farmed escaped salmon was excluded as the origin of the observed disconnection between gene(s) and maturation age, we conclude that the environmental changes observed in the North Atlantic during the past decades have led to bypassing of the influence of vgll3 and six6 on maturation through growth-driven plasticity.


Assuntos
Características de História de Vida , Salmo salar , Masculino , Feminino , Animais , Fenótipo , Genótipo , Reprodução/genética , Alelos , Salmo salar/genética
2.
Evol Appl ; 15(5): 853-864, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35603027

RESUMO

The release of domesticated conspecifics into the natural environment, whether deliberate or accidental, has the potential to alter the genetic integrity and evolutionary trajectory of wild populations. This widespread challenge is of particular concern for wild Atlantic salmon. By investigating phenotypic differences between the offspring of domesticated, hybrid, and wild Atlantic salmon released into the natural environment, earlier studies have documented the short-term consequences of introgression from domesticated fish into wild salmon populations. However, few studies have investigated the joined product of introgression and natural selection after several generations. Here, we investigated the phenotypic response of an Atlantic salmon population that has been subjected to an average of 24% genetic admixture by domesticated conspecifics escaping from fish farms over three decades (approximately 6-7 generations). Individual levels of admixture were positively correlated with increased size at the smolt and adult stages for both sexes, a decrease in the age of male smolts, and a decrease in the age at maturity for males. These life history changes are presumably the consequence of the well-documented directional selection for increased growth in domesticated salmon and are likely maladaptive. However, the most novel result of this study is that admixture was positively linked with delayed date of return to the river, with highly admixed fish arriving up to 26 days later than nonadmixed fish. Potentially, this phenological change provides admixed individuals with a survival advantage in the later phase of the life cycle as it reduces their period of exposure to selection through rod and line angling. We, therefore, conclude that while gene flow from domesticated conspecifics changes life history and phenological traits of wild Atlantic salmon populations, most of which are likely to be maladaptive, when pressured by additional anthropogenic challenges, some changes may confer a fitness advantage for a short part of the life cycle.

3.
Evol Appl ; 14(2): 446-461, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664787

RESUMO

Most Atlantic salmon (Salmo salar L.) populations follow an anadromous life cycle, spending early life in freshwater, migrating to the sea for feeding, and returning to rivers to spawn. At the end of the last ice age ~10,000 years ago, several populations of Atlantic salmon became landlocked. Comparing their genomes to their anadromous counterparts can help identify genetic variation related to either freshwater residency or anadromy. The objective of this study was to identify consistently divergent loci between anadromous and landlocked Atlantic salmon strains throughout their geographical distribution, with the long-term aim of identifying traits relevant for salmon aquaculture, including fresh and seawater growth, omega-3 metabolism, smoltification, and disease resistance. We used a Pool-seq approach (n = 10-40 individuals per population) to sequence the genomes of twelve anadromous and six landlocked Atlantic salmon populations covering a large part of the Northern Hemisphere and conducted a genomewide association study to identify genomic regions having been under different selection pressure in landlocked and anadromous strains. A total of 28 genomic regions were identified and included cadm1 on Chr 13 and ppargc1a on Chr 18. Seven of the regions additionally displayed consistently reduced heterozygosity in fish obtained from landlocked populations, including the genes gpr132, cdca4, and sertad2 on Chr 15. We also found 16 regions, including igf1 on Chr 17, which consistently display reduced heterozygosity in the anadromous populations compared to the freshwater populations, indicating relaxed selection on traits associated with anadromy in landlocked salmon. In conclusion, we have identified 37 regions which may harbor genetic variation relevant for improving fish welfare and quality in the salmon farming industry and for understanding life-history traits in fish.

4.
BMC Genet ; 21(1): 123, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183224

RESUMO

BACKGROUND: Farmed Atlantic salmon are one of the most economically significant global aquaculture products. Early sexual maturation of farmed males represents a significant challenge to this industry and has been linked with the vgll3 genotype. However, tools to aid research of this topic, such as all-male and clonal fish, are still lacking. The present 6-year study examined if all-male production is possible in Atlantic salmon, a species with heteromorphic sex chromosomes (males being XY, females XX), and if all-male fish can be applied to further explore the vgll3 contribution on the likelihood of early maturation. RESULTS: Estrogen treatment of mixed sex yolk sac larvae gave rise to one sexually mature hermaphrodite with a male genotype (XY) that was used to produce both self-fertilized offspring and androgenetic double haploid (dh) offspring following egg activation with UV treated sperm and pressure shock to block the first mitotic division. There were YY supermales among both offspring types, which were crossed with dh females. Between 1 and 8% of the putative all-male offspring from the eight crosses with self-fertilized supermales were found to have ovaries, and 95% of these phenotypic females were also genetically female. None of the offspring from the one dh supermale cross had ovaries. When assessing the general contribution of the vgll3 locus on the likelihood of early post-smolt sexual maturation (jacking) in the all-male populations we found individuals that were homozygous for the early maturing genotype (97%) were more likely to enter puberty than individuals that were homozygous for the late maturing genotype (26%). However, the likelihood of jacking within individuals with an early/late heterozygous genotype was higher when the early allele came from the dam (94%) compared to the sire (45%). CONCLUSIONS: The present results show that supermale Atlantic salmon are viable and fertile and can be used as a research tool to study important aspects of sexual maturation, such as to further explore the sex dependent parental genetic contribution to age at puberty in Atlantic salmon. In addition, we report the production of viable double haploid supermale fish.


Assuntos
Salmo salar/genética , Maturidade Sexual/genética , Alelos , Animais , Feminino , Fertilidade , Genótipo , Haploidia , Organismos Hermafroditas , Masculino , Fenótipo , Salmo salar/fisiologia , Fatores de Transcrição/genética
5.
Front Genet ; 11: 544207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173531

RESUMO

Despite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are among the best studied fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of recent transposition events in this species. We hypothesized the existence of an autosomal copy of sdY, causing apparent discordance between phenotypic and genetic sex, that is transmitted in accordance with autosomal inheritance. To test this, we developed a qPCR methodology to detect the total number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2,025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomal copies of sdY in addition to the Y-specific copy present in males. Patterns across families were highly consistent with autosomal inheritance. These autosomal sdY copies appear to have lost the ability to function as a sex determining gene and were only occasionally assigned to the actual sex chromosome in any of the affected families.

6.
BMC Genet ; 21(1): 13, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033538

RESUMO

BACKGROUND: Quantitative traits are typically considered to be under additive genetic control. Although there are indications that non-additive factors have the potential to contribute to trait variation, experimental demonstration remains scarce. Here, we investigated the genetic basis of growth in Atlantic salmon by exploiting the high level of genetic diversity and trait expression among domesticated, hybrid and wild populations. RESULTS: After rearing fish in common-garden experiments under aquaculture conditions, we performed a variance component analysis in four mapping populations totaling ~ 7000 individuals from six wild, two domesticated and three F1 wild/domesticated hybrid strains. Across the four independent datasets, genome-wide significant quantitative trait loci (QTLs) associated with weight and length were detected on a total of 18 chromosomes, reflecting the polygenic nature of growth. Significant QTLs correlated with both length and weight were detected on chromosomes 2, 6 and 9 in multiple datasets. Significantly, epistatic QTLs were detected in all datasets. DISCUSSION: The observed interactions demonstrated that the phenotypic effect of inheriting an allele deviated between half-sib families. Gene-by-gene interactions were also suggested, where the combined effect of two loci resulted in a genetic effect upon phenotypic variance, while no genetic effect was detected when the two loci were considered separately. To our knowledge, this is the first documentation of epistasis in a quantitative trait in Atlantic salmon. These novel results are of relevance for breeding programs, and for predicting the evolutionary consequences of domestication-introgression in wild populations.


Assuntos
Domesticação , Epistasia Genética , Locos de Características Quantitativas , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Animais , Cruzamento , Mapeamento Cromossômico , Feminino , Ligação Genética , Masculino , Fenótipo
7.
R Soc Open Sci ; 6(4): 190021, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183145

RESUMO

The diversity of reproduction and associated mating patterns in Atlantic salmon (Salmo salar) has long captivated evolutionary biologists. Salmo salar exhibit strategies involving migration, bold mating behaviours and radical morphological and physiological change. One such radical change is the elongation and curvature of the lower jaw in sexually mature males into a hook-like appendage called the kype. The kype is a secondary sexual characteristic used in mating hierarchies and a prime candidate for sexual selection. As one of the core global aquaculture fish species, however, mate choice, and thus sexual selection, has been replaced by industrial artificial fertilization seeking to develop more commercially viable strains. Removal of mate choice provides a unique opportunity to examine the kype over successive generations in the absence of sexual selection. Here we use a large-scale common-garden experiment, incorporating six experimental strains (wild, farmed and wild × farmed hybrids), experiencing one to three sea winters, to assess the impact of age and genetic background. After controlling for allometry, fork length-adjusted kype height (AKH) was significantly reduced in the domesticated strain in comparison to two wild strains. Furthermore, genetic variation at a locus on linkage group SSA1 was associated with kype height, and a locus on linkage group SSA23 was associated with fork length-adjusted kype length (AKL). The reduction in fork length-AKH in domesticated salmon suggests that the kype is of importance in mate choice and that it has decreased due to relaxation of sexual selection. Fork length-AKL showed an increase in domesticated individuals, highlighting that it may not be an important cue in mate choice. These results give us insight into the evolutionary significance of the kype, as well as implications of genetic induced phenotypic change caused by domesticated individuals escaping into the natural environment.

8.
BMC Genet ; 20(1): 44, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060499

RESUMO

BACKGROUND: In Atlantic salmon in the wild, age at maturity is strongly influenced by the vgll3 locus. Under farming conditions, light, temperature and feeding regimes are known significantly advance or delay age at maturity. However, the potential influence of the vgll3 locus on the maturation of salmon reared under farming conditions has been rarely investigated, especially in females. RESULTS: Here, we reared domesticated salmon (mowi strain) with different vgll3 genotypes under standard farming conditions until they matured at either one, two or more than two sea winters. Interestingly, and in contrast to previous findings in the wild, we were not able to identify a link between vgll3 and age at maturity in females when reared under farming conditions. For males however, we found that the probability of delaying maturation from one to two sea winters was significantly lower in fish homozygous for the early allele compared to homozygous fish for the late allele, while the probability for heterozygous fish was intermediate. These data also contrast to previous findings in the wild where the early allele has been reported as dominant. However, we found that the probability of males delaying maturation from two to three sea winters was regulated in the same manner as the wild. CONCLUSIONS: Collectively, our data suggest that increased growth rates in mowi salmon, caused by high feed intake and artificial light and temperature regimes together with other possible genetic/epigenetic components, may significantly influence the impact that the vgll3 locus has on age at maturity, especially in females. In turn, our results show that the vgll3 locus can only to a large extent be used in selective breeding to control age at maturation in mowi males. In summary, we here show that in contrast to the situation in wild salmon, under farming conditions vgll3 does not seem to influence age at maturity in mowi females whereas in mowi males, maturing as one or two sea winters it alters the early allele effect from dominant to intermediate.


Assuntos
Genótipo , Salmo salar/genética , Maturidade Sexual/genética , Fatores de Transcrição/genética , Animais , Feminino , Masculino , Fenótipo
9.
BMC Genet ; 19(1): 90, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285613

RESUMO

BACKGROUND: Fish may display variations in ploidy, including three sets of chromosomes, known as triploidy. A recent study revealed a frequency of ~ 2% spontaneous (i.e., non-intentional) triploidy in domesticated Atlantic salmon produced in Norwegian aquaculture in the period 2007-2014. In contrast, the frequency of triploidy in wild salmon populations has not been studied thus far, and in wild populations of other organisms, it has been very rarely studied. In population genetic data sets, individuals that potentially display chromosome abnormalities, such as triploids with three alleles, are typically excluded on the premise that they may reflect polluted or otherwise compromised samples. Here, we critically re-investigated the microsatellite genetic profile of ~ 6000 wild Atlantic salmon sampled from 80 rivers in Norway and Russia, to investigate the frequency of triploid individuals in wild salmon populations for the first time. RESULTS: We detected a single triploid salmon, and five individuals displaying three alleles at one of the loci, thus regarded as putatively trisomic. This gave an overall frequency of triploid and putatively trisomic individuals in the data set of 0.017 and 0.083% respectively. The triploid salmon was an adult female, and had spent 2 years in freshwater and 2 years in the sea. CONCLUSIONS: We conclude that the frequency of naturally-occurring triploid Atlantic salmon in wild Norwegian and Russian populations is very low, and many-fold lower than the frequency of spontaneous triploids observed in aquaculture. Our results suggest that aquaculture rearing conditions substantially increase the probability of triploidy to develop, and/or permits greater survival of triploid individuals, in comparison to the wild.


Assuntos
Salmo salar/genética , Triploidia , Animais , Diploide , Genética Populacional
10.
Sci Rep ; 8(1): 1912, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382956

RESUMO

Vgll3 is linked to age at maturity in Atlantic salmon (Salmo salar). However, the molecular mechanisms involving Vgll3 in controlling timing of puberty as well as relevant tissue and cell types are currently unknown. Vgll3 and the associated Hippo pathway has been linked to reduced proliferation activity in different tissues. Analysis of gene expression reveals for the first time that vgll3 and several members of the Hippo pathway were down-regulated in salmon testis during onset of puberty and remained repressed in maturing testis. In the gonads, we found expression in Sertoli and granulosa cells in males and females, respectively. We hypothesize that vgll3 negatively regulates Sertoli cell proliferation in testis and therefore acts as an inhibitor of pubertal testis growth. Gonadal expression of vgll3 is located to somatic cells that are in direct contact with germ cells in both sexes, however our results indicate sex-biased regulation of vgll3 during puberty.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Salmo salar/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/fisiologia , Feminino , Expressão Gênica/fisiologia , Células Germinativas/metabolismo , Células da Granulosa/metabolismo , Masculino , Diferenciação Sexual/fisiologia , Maturidade Sexual/fisiologia
11.
BMC Genomics ; 17(1): 610, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515098

RESUMO

BACKGROUND: Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. RESULTS: In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13-15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. CONCLUSION: Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation.


Assuntos
Resistência à Doença/genética , Doenças dos Peixes/genética , Duplicação Gênica , Genoma , Salmo salar/genética , Seleção Genética , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Animais , Aquicultura , Evolução Biológica , Mapeamento Cromossômico , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Mutação de Sentido Incorreto , NF-kappa B/genética , NF-kappa B/imunologia , Filogenia , Polimorfismo de Nucleotídeo Único , Salmo salar/classificação , Salmo salar/imunologia , Salmo salar/virologia , Tetraploidia
12.
PLoS Genet ; 11(11): e1005628, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26551894

RESUMO

Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.


Assuntos
Envelhecimento/genética , Salmo salar/genética , Fatores de Transcrição/genética , Animais , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
13.
J Hered ; 102(2): 237-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21325021

RESUMO

Interspecific hybridization may occur in situations of recent contact between a colonizer and a resident species, being more intense in the colonization front. Atlantic salmon Salmo salar and brown trout S. trutta have been sympatric species since their origin and they share spatial and temporal spawning niches, exhibiting low levels of bidirectional interspecific hybridization and introgression throughout their distribution range. Different causes have been identified for increased hybridization, from escapes or deliberate releases of domesticated fish to sneaking male behavior. We have examined hybridization rates and direction in different situations of advance of one of these species into a territory formerly inhabited by the other (247 samples were analyzed in northern Spain and 487 in Kerguelen Islands). In all cases, hybrids found in the colonization front were offspring of colonizer females and resident males. We hypothesize that these findings are the result of adaptive relaxed mate choice of colonizing females, regardless of the relative abundance of each species.


Assuntos
Hibridização Genética , Salmo salar/genética , Truta/genética , Animais , Quimera/genética , DNA Mitocondrial , Feminino , Masculino , Espanha
14.
J Strength Cond Res ; 23(8): 2311-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19826294

RESUMO

This study investigated the magnitude of whole-body vibration (WBV) at 30 Hz induced in surface electromyography root-mean-square (EMGrms) signals of different amplitudes and footwear conditions of unloaded isometric half squat (100). For this purpose, 10 healthy and active males (age 28.7 +/- 4.6 yr; height 180 +/- 5.9 cm; and weight 90 +/- 13.4 kg) volunteered to participate in this study. Subjects were exposed to the WBV treatment using a vibration platform (FreeMotion Fitness iTonic). The subjects were exposed randomly to 4 different treatments of WBV: with shoes 2 mm amplitude, without shoes 2 mm, with shoes 4 mm, and without shoes 4 mm. The EMGrms signals were recorded from the vastus lateralis and the gastrocnemius medialis muscle during the different conditions. The WBV treatments resulted in a significantly higher (p

Assuntos
Músculo Esquelético/fisiologia , Sapatos , Vibração , Adulto , Análise de Variância , Eletromiografia , Humanos , Masculino
15.
J Strength Cond Res ; 22(3): 735-40, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18438246

RESUMO

Training to develop superior muscular power has become a key component to most progressive sport conditioning programs. Conventional resistance training, plyometrics, and speed/agility modalities have all been employed in an effort to realize superlative combinations of training stimuli. New training devices such as the VertiMax resisted jump trainer are marketed as a means of improving lower body reactive power. The purpose of this study was to evaluate the effectiveness of the VertiMax, in combination with traditional training modalities, for improvements in lower body power among highly trained athletes. Forty men and women Division I collegiate athletes representing the sports of baseball, basketball, soccer, gymnastics, and track completed a 12-week mixed-methods training program. Two groups were constructed with both groups performing the same conventional resistance training and strength training exercises. The training control group performed traditional plyometric exercises while the experimental group performed similar loaded jump training on the VertiMax. Lower body power was measured before and after the training program by the TENDO FiTROdyne Powerlizer and statistically compared for differences between groups. Data analyses identified a significant (p < 0.05) and meaningful difference between power development among the 2 groups, with the VertiMax eliciting a greater treatment effect (effect size = 0.54) over conventional resistance and plyometric training alone (effect size = 0.09). These data convincingly demonstrate that the VertiMax represents an effective strategy for developing lower body power among trained college athletes, when combined with traditional strength and conditioning approaches.


Assuntos
Teste de Esforço/instrumentação , Força Muscular/fisiologia , Educação Física e Treinamento/métodos , Esportes/fisiologia , Adulto , Estudos de Coortes , Desenho de Equipamento , Feminino , Humanos , Extremidade Inferior , Masculino , Resistência Física , Probabilidade , Sensibilidade e Especificidade , Torque , Suporte de Carga
16.
J Strength Cond Res ; 22(3): 731-4, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18438247

RESUMO

Resisted jumping devices and resisted plyometric training have become more common in recent years. The effectiveness of such training has yet to be determined among high school athletes. Sixty-four high school athletes (50 boys and 14 girls) from a variety of sports were divided into 2 groups and participated in a training intervention that differed only by the use of the VertiMax jump trainer in 1 group. Lower-body power was tested before and after the intervention and compared statistically for differences between the groups. Athletes from both groups followed a periodized training program with resistance exercises performed 2 or 3 days per week, and sprint and plyometric training (i.e., training control group) or sprint, plyometric, and VertiMax training (i.e., VertiMax group) 1 or 2 days per week, for 12 total weeks. In addition to the traditional compound lower-body lifts and equated sprint work, the VertiMax group performed supplementary exercises on the VertiMax training apparatus. The average improvement in power observed in the training control group was 49.50 +/- 97.83 W, and the increase in power in the VertiMax group was 217.14 +/- 99.21 W. The differences in power after the test and improvements in power with training were found to differ between the groups (P < 0.05) and favored the VertiMax training group. Combined with previous research with college athletes, these data show the added effectiveness of resisted jump training on the VertiMax among athletes for the development of lower-body power.


Assuntos
Teste de Esforço/instrumentação , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Esportes/fisiologia , Adolescente , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior , Masculino , Educação Física e Treinamento/métodos , Probabilidade , Sensibilidade e Especificidade , Torque , Suporte de Carga
17.
J Strength Cond Res ; 22(1): 230-4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18296980

RESUMO

Exercise professionals seeking to develop evidence-based training programs rely on several training principles demonstrated through research and professional experience. In an effort to further research examining these principles, an investigation was designed and completed to evaluate the compatibility of cardiovascular endurance and neuromuscular power training. Sixteen Division-I collegiate baseball players were divided into two training groups with lower body power measured before and after their college playing season. The two groups differed in training in that one group performed moderate- to high-intense cardiovascular endurance training 3-4 days per week throughout the season, while the other group participated in speed/speed endurance training. A significant difference between groups (P < .05) was identified in the change in lower body power during the baseball season. During the season, the endurance training group decreased an average of 39.50 +/- 128.03 watts while the speed group improved an average of 210.63 +/- 168.96 watts. These data demonstrate that moderate- to high-intense cardiovascular endurance and neuromuscular power training do not appear to be compatible when performed simultaneously. For baseball players, athletes who rely heavily on power and speed, conventional baseball conditioning involving significant amounts of cardiovascular endurance training should be altered to include more speed/power interval training.


Assuntos
Desempenho Atlético , Beisebol/fisiologia , Educação Física e Treinamento/métodos , Resistência Física/fisiologia , Levantamento de Peso/fisiologia , Adulto , Estudos de Coortes , Tolerância ao Exercício/fisiologia , Humanos , Masculino , Força Muscular/fisiologia , Aptidão Física , Probabilidade , Sensibilidade e Especificidade
18.
Ecotoxicol Environ Saf ; 55(1): 24-9, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12706390

RESUMO

Mussels Mytilus edulis were sampled at increasing distances from urban effluents in two very different locations, Gijon (northern Spain, Europe, 43 degrees N) and Puerto Madryn (Argentina, South America, 43 degrees S), and from an industry effluent in Puerto Madryn. The micronucleus test was performed on branchial cells. For the three situations, a statistically significant negative association was found between the distance of sampling site from the effluent and the mean number of micronuclei per 1000 cell counts, in a range of distances as short as 300m. The micronucleus test in Mytilidae, here revealed to be sensitive enough to monitor urban pollution, is proposed for routine surveys of pollution as a bioindicator of choice for coastal ecosystems.


Assuntos
Bivalves/genética , Dano ao DNA , Poluentes da Água/toxicidade , Animais , Biomarcadores/análise , Ecossistema , Monitoramento Ambiental/métodos , Testes para Micronúcleos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA