Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hered ; 115(3): 241-252, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38567866

RESUMO

Although spiders are one of the most diverse groups of arthropods, the genetic architecture of their evolutionary adaptations is largely unknown. Specifically, ancient genome-wide duplication occurring during arachnid evolution ~450 mya resulted in a vast assembly of gene families, yet the extent to which selection has shaped this variation is understudied. To aid in comparative genome sequence analyses, we provide a chromosome-level genome of the Western black widow spider (Latrodectus hesperus)-a focus due to its silk properties, venom applications, and as a model for urban adaptation. We used long-read and Hi-C sequencing data, combined with transcriptomes, to assemble 14 chromosomes in a 1.46 Gb genome, with 38,393 genes annotated, and a BUSCO score of 95.3%. Our analyses identified high repetitive gene content and heterozygosity, consistent with other spider genomes, which has led to challenges in genome characterization. Our comparative evolutionary analyses of eight genomes available for species within the Araneoidea group (orb weavers and their descendants) identified 1,827 single-copy orthologs. Of these, 155 exhibit significant positive selection primarily associated with developmental genes, and with traits linked to sensory perception. These results support the hypothesis that several traits unique to spiders emerged from the adaptive evolution of ohnologs-or retained ancestrally duplicated genes-from ancient genome-wide duplication. These comparative spider genome analyses can serve as a model to understand how positive selection continually shapes ancestral duplications in generating novel traits today within and between diverse taxonomic groups.


Assuntos
Viúva Negra , Evolução Molecular , Duplicação Gênica , Genoma , Animais , Viúva Negra/genética , Cromossomos/genética , Filogenia , Transcriptoma , Aranhas/genética , Evolução Biológica , Anotação de Sequência Molecular , Seleção Genética
2.
BMC Ecol Evol ; 22(1): 89, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810286

RESUMO

BACKGROUND: Spiders have evolved two types of sticky capture threads: one with wet adhesive spun by ecribellate orb-weavers and another with dry adhesive spun by cribellate spiders. The evolutionary history of cribellate capture threads is especially poorly understood. Here, we use genomic approaches to catalog the spider-specific silk gene family (spidroins) for the cribellate orb-weaver Uloborus diversus. RESULTS: We show that the cribellar spidroin, which forms the puffy fibrils of cribellate threads, has three distinct repeat units, one of which is conserved across cribellate taxa separated by ~ 250 Mya. We also propose candidates for a new silk type, paracribellar spidroins, which connect the puffy fibrils to pseudoflagelliform support lines. Moreover, we describe the complete repeat architecture for the pseudoflagelliform spidroin (Pflag), which contributes to extensibility of pseudoflagelliform axial fibers. CONCLUSIONS: Our finding that Pflag is closely related to Flag, supports homology of the support lines of cribellate and ecribellate capture threads. It further suggests an evolutionary phase following gene duplication, in which both Flag and Pflag were incorporated into the axial lines, with subsequent loss of Flag in uloborids, and increase in expression of Flag in ecribellate orb-weavers, explaining the distinct mechanical properties of the axial lines of these two groups.


Assuntos
Fibroínas , Aranhas , Animais , Evolução Biológica , Fibroínas/genética , Duplicação Gênica , Seda/genética , Aranhas/genética
3.
Insect Biochem Mol Biol ; 135: 103594, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052321

RESUMO

Molecular studies of the secretory glands involved in spider silk production have revealed candidate genes for silk synthesis and a complicated history of spider silk gene evolution. However, differential gene expression profiles of the multiple silk gland types within an individual orb-web weaving spider are lacking. Each of these gland types produces a functionally distinct silk type. Comparison of gene expression among spider silk gland types would provide insight into the genes that define silk glands generally from non-silk gland tissues, and the genes that define silk glands from each other. Here, we perform 3' tag digital gene expression profiling of the seven silk gland types of the silver garden orb weaver Argiope argentata. Five of these gland types produce silks that are non-adhesive fibers, one silk includes both fibers and glue-like adhesives, and one silk is exclusively glue-like. We identify 1275 highly expressed, significantly upregulated, and tissue specific silk gland specific transcripts (SSTs). These SSTs include seven types of spider silk protein encoding genes known as spidroin genes. We find that the fiber-producing major ampullate and minor ampullate silk glands have more similar expression profiles than any other pair of glands. We also find that a subset of the SSTs is enriched for transmembrane transport and oxidoreductases, and that these transcripts highlight differences and similarities among the major ampullate, minor ampullate, and aggregate silk glands. Furthermore, we show that the wet glue-producing aggregate glands have the most unique SSTs, but still share some SSTs with fiber producing glands. Aciniform glands were the only gland type to share a majority of SSTs with other silk gland types, supporting previous hypotheses that duplication of aciniform glands and subsequent divergence of the duplicates gave rise to the multiple silk gland types within an individual spider.


Assuntos
Proteínas de Artrópodes/genética , Seda/genética , Aranhas , Animais , Perfilação da Expressão Gênica , Glândulas Salivares/metabolismo , Seda/química , Aranhas/genética , Aranhas/metabolismo
4.
Integr Comp Biol ; 61(4): 1459-1480, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34003260

RESUMO

The origin of aggregate silk glands and their production of wet adhesive silks is considered a key innovation of the Araneoidea, a superfamily of spiders that build orb-webs and cobwebs. Orb-web weavers place aggregate glue on an extensible capture spiral, whereas cobweb weavers add it to the ends of strong, stiff fibers, called gumfoot lines. Here we describe the material behavior and quantitative proteomics of the aggregate glues of two cobweb weaving species, the western black widow, Latrodectus hesperus, and the common house spider, Parasteatoda tepidariorum. For each species, respectively, we identified 48 and 33 proteins that were significantly more abundant in the portion of the gumfoot line with glue than in its fibers. These proteins were more highly glycosylated and phosphorylated than proteins found in silk fibers without glue, which likely explains aggregate glue stickiness. Most glue-enriched proteins were of anterior aggregate gland origin, supporting the hypothesis that cobweb weavers' posterior aggregate glue is specialized for another function. We found that cobweb weaver glue droplets are stiffer and tougher than the adhesive of most orb-web weaving species. Attributes of gumfoot glue protein composition that likely contribute to this stiffness include the presence of multiple protein families with conserved cysteine residues, a bimodal distribution of isoelectric points, and families with conserved functions in protein aggregation, all of which should contribute to cohesive protein-protein interactions. House spider aggregate droplets were more responsive to humidity changes than black widow droplets, which could be mediated by differences in protein sequence, post-translational modifications, the non-protein components of the glue droplets, and/or the larger amount of aqueous material that surrounds the adhesive cores of their glue droplets.


Assuntos
Aranhas , Adesivos , Sequência de Aminoácidos , Animais , Seda
5.
PLoS One ; 15(12): e0237286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296374

RESUMO

Cobweb weaving spiders and their relatives spin multiple task-specific fiber types. The unique material properties of each silk type result from differences in amino acid sequence and structure of their component proteins, primarily spidroins (spider fibrous proteins). Amino acid content and gene expression measurements of spider silks suggest some spiders change expression patterns of individual protein components in response to environmental cues. We quantified mRNA abundance of three spidroin encoding genes involved in prey capture in the common house spider, Parasteatoda tepidariorum (Theridiidae), fed different diets. After 10 days of acclimation to the lab on a diet of mealworms, spiders were split into three groups: (1) individuals were immediately dissected, (2) spiders were fed high-energy crickets, or (3) spiders were fed low-energy flies, for 1 month. All spiders gained mass during the acclimation period and cricket-fed spiders continued to gain mass, while fly-fed spiders either maintained or lost mass. Using quantitative PCR, we found no significant differences in the absolute or relative abundance of dragline gene transcripts, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), among groups. In contrast, prey-wrapping minor ampullate spidroin (MiSp) gene transcripts were significantly less abundant in fly-fed than lab-acclimated spiders. However, when measured relative to Actin, cricket-fed spiders showed the lowest expression of MiSp. Our results suggest that house spiders are able to maintain silk production, even in the face of a low-quality diet.


Assuntos
Expressão Gênica/genética , Seda/genética , Aranhas/genética , Aminoácidos/genética , Animais , Dieta , Fibroínas/genética
6.
Genome Biol ; 21(1): 15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31969194

RESUMO

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Assuntos
Artrópodes/genética , Evolução Molecular , Animais , Artrópodes/classificação , Metilação de DNA , Especiação Genética , Variação Genética , Filogenia
7.
Genes (Basel) ; 11(1)2020 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940922

RESUMO

Due to their abundance and ability to invade diverse environments, many arthropods have become pests of economic and health concern, especially in urban areas. Transcriptomic analyses of arthropod ovaries have provided insight into life history variation and fecundity, yet there are few studies in spiders despite their diversity within arthropods. Here, we generated a de novo ovarian transcriptome from 10 individuals of the western black widow spider (Latrodectus hesperus), a human health pest of high abundance in urban areas, to conduct comparative ovarian transcriptomic analyses. Biological processes enriched for metabolism-specifically purine, and thiamine metabolic pathways linked to oocyte development-were significantly abundant in L. hesperus. Functional and pathway annotations revealed overlap among diverse arachnid ovarian transcriptomes for highly-conserved genes and those linked to fecundity, such as oocyte maturation in vitellogenin and vitelline membrane outer layer proteins, hormones, and hormone receptors required for ovary development, and regulation of fertility-related genes. Comparative studies across arachnids are greatly needed to understand the evolutionary similarities of the spider ovary, and here, the identification of ovarian proteins in L. hesperus provides potential for understanding how increased fecundity is linked to the success of this urban pest.


Assuntos
Viúva Negra , Perfilação da Expressão Gênica , Ovário/metabolismo , Transcriptoma , Animais , Viúva Negra/genética , Viúva Negra/metabolismo , Feminino , Humanos , Saúde da População Urbana
8.
Curr Opin Insect Sci ; 25: 51-57, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29602362

RESUMO

Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.


Assuntos
Aracnídeos/genética , Genoma , Animais , Aracnídeos/classificação , Evolução Molecular , Filogenia , Seda/genética , Venenos de Aranha/genética
9.
Int J Biol Macromol ; 113: 829-840, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454054

RESUMO

A powerful system for studying protein aggregation, particularly rapid self-assembly, is spider silk. Spider silks are proteinaceous and silk proteins are synthesized and stored within silk glands as liquid dope. As needed, liquid dope is near-instantaneously transformed into solid fibers or viscous adhesives. The dominant constituents of silks are spidroins (spider fibroins) and their terminal domains are vital for the tight control of silk self-assembly. To better understand spidroin termini, we used target capture and deep sequencing to identify spidroin gene sequences from six species representing the araneoid families of Araneidae, Nephilidae, and Theridiidae. We obtained 145 terminal regions, of which 103 are newly annotated here, as well as novel variants within nine diverse spidroin types. Our comparative analyses demonstrated the conservation of acidic, basic, and cysteine amino acid residues across spidroin types that had been proposed to be important for monomer stability, dimer formation, and self-assembly from a limited sampling of spidroins. Computational, protein homology modeling revealed areas of spidroin terminal regions that are highly conserved in three-dimensions despite sequence divergence across spidroin types. Analyses of our dense sampling of terminal regions suggest that most spidroins share stabilization mechanisms, dimer formation, and tertiary structure, despite producing functionally distinct materials.


Assuntos
Sequência Conservada , Genômica , Homologia de Sequência de Aminoácidos , Seda/química , Seda/genética , Aranhas/genética , Sequência de Aminoácidos , Animais , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Seda/metabolismo
10.
BMC Biol ; 15(1): 62, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28756775

RESUMO

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Aranhas/genética , Animais , Feminino , Masculino , Sintenia
11.
Sci Rep ; 7(1): 8393, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827773

RESUMO

Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.


Assuntos
Duplicação Gênica , Expressão Gênica , Seda/biossíntese , Aranhas/genética , Animais , Evolução Molecular , Glândulas Exócrinas , Perfilação da Expressão Gênica
12.
Zoology (Jena) ; 122: 107-114, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28536006

RESUMO

Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids.


Assuntos
Regulação da Expressão Gênica/fisiologia , Seda/fisiologia , Aranhas/fisiologia , Animais , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie , Transcriptoma
13.
BMC Evol Biol ; 17(1): 78, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288560

RESUMO

BACKGROUND: Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. RESULTS: We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of ß-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. CONCLUSIONS: MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.


Assuntos
Evolução Molecular , Seda/genética , Aranhas/genética , Substituição de Aminoácidos , Animais , Fibroínas/genética , Duplicação Gênica , Filogenia , Aranhas/classificação
14.
Sci Rep ; 6: 21589, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875681

RESUMO

Spiders in the superfamily Araneoidea produce viscous glue from aggregate silk glands. Aggregate glue coats prey-capture threads and hampers the escape of prey from webs, thereby increasing the foraging success of spiders. cDNAs for Aggregate Spider Glue 1 (ASG1) and 2 (ASG2) have been previously described from the golden orb-weaver, Nephila clavipes, and Western black widow, Latrodectus hesperus. To further investigate aggregate glues, we assembled ASG1 and ASG2 from genomic target capture libraries constructed from three species of cob-web weavers and three species of orb-web weavers, all araneoids. We show that ASG1 is unlikely to be a glue, but rather is part of a widespread arthropod gene family, the peritrophic matrix proteins. For ASG2, we demonstrate its remarkable architectural and sequence similarities to spider silk fibroins, indicating that ASG2 is a member of the spidroin gene family. Thus, spidroins have diversified into glues in addition to task-specific, high performance fibers.


Assuntos
Fibroínas/genética , Seda/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Genômica , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Aranhas
15.
Genome Biol Evol ; 8(1): 228-42, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26733576

RESUMO

Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland-specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species.


Assuntos
Glândulas Endócrinas/metabolismo , Evolução Molecular , Duplicação Gênica , Seleção Genética , Venenos de Aranha/genética , Aranhas/genética , Transcriptoma , Animais , Feminino , Aranhas/metabolismo
16.
J Proteome Res ; 14(10): 4223-31, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26302244

RESUMO

Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes.


Assuntos
Proteínas de Insetos/isolamento & purificação , Proteoma/isolamento & purificação , RNA Mensageiro/genética , Seda/química , Aranhas/genética , Animais , Cromatografia Líquida , Quimotripsina/química , Feminino , Regulação da Expressão Gênica , Biblioteca Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fragmentos de Peptídeos/análise , Proteólise , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Seda/biossíntese , Seda/genética , Aranhas/metabolismo , Espectrometria de Massas em Tandem , Transcrição Gênica , Tripsina/química
17.
Genome Biol Evol ; 7(7): 1856-70, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26058392

RESUMO

The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae).


Assuntos
Evolução Molecular , Duplicação Gênica , Aranhas/genética , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Análise de Sequência de DNA , Seda/biossíntese , Aranhas/metabolismo
18.
FEBS Lett ; 588(21): 3891-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25217831

RESUMO

Black widow venom contains α-latrotoxin, infamous for causing intense pain. Combining 33 kb of Latrodectus hesperus genomic DNA with RNA-Seq, we characterized the α-latrotoxin gene and discovered a paralog, 4.5 kb downstream. Both paralogs exhibit venom gland specific transcription, and may be regulated post-transcriptionally via musashi-like proteins. A 4 kb intron interrupts the α-latrotoxin coding sequence, while a 10 kb intron in the 3' UTR of the paralog may cause non-sense-mediated decay. Phylogenetic analysis confirms these divergent latrotoxins diversified through recent tandem gene duplications. Thus, latrotoxin genes have more complex structures, regulatory controls, and sequence diversity than previously proposed.


Assuntos
Viúva Negra/genética , Evolução Molecular , Venenos de Aranha/genética , Animais , Elementos de DNA Transponíveis , Feminino , Regulação da Expressão Gênica , Íntrons/genética , Sequências Reguladoras de Ácido Nucleico , Venenos de Aranha/metabolismo
19.
BMC Genomics ; 15: 366, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24916504

RESUMO

BACKGROUND: Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. RESULTS: We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. CONCLUSIONS: Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity.


Assuntos
Proteínas de Artrópodes/análise , Viúva Negra/genética , Genômica/métodos , Espectrometria de Massas/métodos , Venenos de Aranha/química , Venenos de Aranha/genética , Animais , Viúva Negra/metabolismo , Dados de Sequência Molecular , Filogenia , Proteoma/análise , Análise de Sequência de RNA , Seda/genética , Seda/metabolismo , Venenos de Aranha/metabolismo , Transcriptoma
20.
BMC Genomics ; 15: 365, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24916340

RESUMO

BACKGROUND: Spiders (Order Araneae) are essential predators in every terrestrial ecosystem largely because they have evolved potent arsenals of silk and venom. Spider silks are high performance materials made almost entirely of proteins, and thus represent an ideal system for investigating genome level evolution of novel protein functions. However, genomic level resources remain limited for spiders. RESULTS: We de novo assembled a transcriptome for the Western black widow (Latrodectus hesperus) from deeply sequenced cDNAs of three tissue types. Our multi-tissue assembly contained ~100,000 unique transcripts, of which > 27,000 were annotated by homology. Comparing transcript abundance among the different tissues, we identified 647 silk gland-specific transcripts, including the few known silk fiber components (e.g. six spider fibroins, spidroins). Silk gland specific transcripts are enriched compared to the entire transcriptome in several functions, including protein degradation, inhibition of protein degradation, and oxidation-reduction. Phylogenetic analyses of 37 gene families containing silk gland specific transcripts demonstrated novel gene expansions within silk glands, and multiple co-options of silk specific expression from paralogs expressed in other tissues. CONCLUSIONS: We propose a transcriptional program for the silk glands that involves regulating gland specific synthesis of silk fiber and glue components followed by protecting and processing these components into functional fibers and glues. Our black widow silk gland gene repertoire provides extensive expansion of resources for biomimetic applications of silk in industry and medicine. Furthermore, our multi-tissue transcriptome facilitates evolutionary analysis of arachnid genomes and adaptive protein systems.


Assuntos
Viúva Negra/genética , Seda/genética , Análise Serial de Tecidos/métodos , Animais , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Especificidade de Órgãos , Filogenia , Análise de Sequência de DNA , Seda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA