Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLOS Glob Public Health ; 4(4): e0002703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603677

RESUMO

We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Overall, in the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: The study has been registered to the South African National Clinical Trial Registry (SANCTR): DOH-27-012022-7841. The approval letter from SANCTR has been provided in the up-loaded documents.

2.
Clin Immunol ; 259: 109877, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141746

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.


Assuntos
COVID-19 , Doenças do Tecido Conjuntivo , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Criança , SARS-CoV-2 , Citocinas , Imunoglobulina G , Febre , Anticorpos Antivirais
3.
medRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045321

RESUMO

Background: We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. Methods: A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. Results: No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Conclusion: In the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: South African National Clinical Trial Registry (SANCR): DOH-27-012022-7841. Funding: South African Medical Research Council (SAMRC) and South African Department of Health (SA DoH).

4.
PLoS Pathog ; 19(11): e1011772, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943890

RESUMO

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 59-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points, suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Vacinação , Imunidade Adaptativa , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral
5.
Front Immunol ; 14: 1231276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600825

RESUMO

The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , COVID-19 , Infecções por HIV , Fragmentos Fc das Imunoglobulinas , Glicoproteína da Espícula de Coronavírus , Infecções por HIV/sangue , Infecções por HIV/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Fragmentos Fc das Imunoglobulinas/sangue , Fragmentos Fc das Imunoglobulinas/imunologia , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/uso terapêutico , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Células HEK293 , Humanos , Imunidade Humoral , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
6.
medRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993404

RESUMO

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 33-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.

7.
Sci Rep ; 12(1): 16473, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182959

RESUMO

Antibodies with the same variable region can exist as multiple isotypes with varying neutralization potencies, though the mechanism for this is not fully defined. We previously isolated an HIV-directed IgA1 monoclonal antibody (mAb), CAP88-CH06, and showed that IgA1 and IgG3 isotypes of this antibody demonstrated enhanced neutralization compared to IgG1. To explore the mechanism behind this, hinge region and constant heavy chain (CH1) chimeras were constructed between the IgA1, IgG3 and IgG1 mAbs and assessed for neutralization activity, antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC). Hinge chimeras revealed that the increased neutralization potency and phagocytosis of the IgG3 isotype was attributed to its longer hinge region. In contrast, for IgA1, CH1 chimeras showed that this region was responsible both for enhanced neutralization potency and decreased ADCP, though ADCC was not affected. Overall, these data show that the enhanced neutralization potency of CAP88-CH06 IgG3 and IgA1, compared to IgG1, is achieved through distinct mechanisms. Understanding the influence of the hinge and CH1 regions on Fab domain function may provide insights into the engineering of therapeutic antibodies with increased neutralization potency.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/genética , HIV-1/genética , Humanos , Imunoglobulina A/genética , Imunoglobulina G
8.
J Virol ; 96(15): e0055822, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867572

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Cell Host Microbe ; 30(6): 880-886.e4, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436444

RESUMO

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização
10.
Cell Rep Med ; 3(3): 100535, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35474744

RESUMO

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.


Assuntos
COVID-19 , Vacinas Virais , Ad26COVS1 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , SARS-CoV-2/genética
11.
BMC Med ; 20(1): 128, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346184

RESUMO

BACKGROUND: Binding and neutralising anti-Spike antibodies play a key role in immune defence against SARS-CoV-2 infection. Since it is known that antibodies wane with time and new immune-evasive variants are emerging, we aimed to assess the dynamics of anti-Spike antibodies in an African adult population with prior SARS-CoV-2 infection and to determine the effect of subsequent COVID-19 vaccination. METHODS: Using a prospective cohort design, we recruited adults with prior laboratory-confirmed mild/moderate COVID-19 in Blantyre, Malawi, and followed them up for 270 days (n = 52). A subset of whom subsequently received a single dose of the AstraZeneca COVID-19 vaccine (ChAdOx nCov-19) (n = 12). We measured the serum concentrations of anti-Spike and receptor-binding domain (RBD) IgG antibodies using a Luminex-based assay. Anti-RBD antibody cross-reactivity across SARS-CoV-2 variants of concern (VOC) was measured using a haemagglutination test. A pseudovirus neutralisation assay was used to measure neutralisation titres across VOCs. Ordinary or repeated measures one-way ANOVA was used to compare log10 transformed data, with p value adjusted for multiple comparison using Sídák's or Holm-Sídák's test. RESULTS: We show that neutralising antibodies wane within 6 months post mild/moderate SARS-CoV-2 infection (30-60 days vs. 210-270 days; Log ID50 6.8 vs. 5.3, p = 0.0093). High levels of binding anti-Spike or anti-RBD antibodies in convalescent serum were associated with potent neutralisation activity against the homologous infecting strain (p < 0.0001). A single dose of the AstraZeneca COVID-19 vaccine following mild/moderate SARS-CoV-2 infection induced a 2 to 3-fold increase in anti-Spike and -RBD IgG levels 30 days post-vaccination (both, p < 0.0001). The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants. CONCLUSIONS: These findings show that the AstraZeneca COVID-19 vaccine is an effective booster for waning cross-variant antibody immunity after initial priming with SARS-CoV-2 infection. The potency of hybrid immunity and its potential to maximise the benefits of COVID-19 vaccines needs to be taken into consideration when formulating vaccination policies in sub-Saharan Africa, where there is still limited access to vaccine doses.


Assuntos
COVID-19 , Vacinas Virais , Formação de Anticorpos , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Imunização Passiva , Estudos Prospectivos , SARS-CoV-2 , Vacinas Virais/farmacologia , Soroterapia para COVID-19
12.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35233544

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , SARS-CoV-2/imunologia , Ad26COVS1/imunologia , Ad26COVS1/uso terapêutico , Adulto , Idoso , COVID-19/sangue , COVID-19/prevenção & controle , COVID-19/virologia , Estudos de Coortes , Reações Cruzadas , Feminino , Células HEK293 , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/imunologia , Células THP-1 , Resultado do Tratamento , Vacinação/métodos
13.
BMC Med ; 19(1): 303, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34794434

RESUMO

BACKGROUND: By August 2021, the COVID-19 pandemic has been less severe in sub-Saharan Africa than elsewhere. In Malawi, there have been three subsequent epidemic waves. We therefore aimed to describe the dynamics of SARS-CoV-2 exposure in Malawi. METHODS: We measured the seroprevalence of anti-SARS-CoV-2 antibodies amongst randomly selected blood transfusion donor sera in Malawi from January 2020 to July 2021 using a cross-sectional study design. In a subset, we also assessed in vitro neutralisation against the original variant (D614G WT) and the Beta variant. RESULTS: A total of 5085 samples were selected from the blood donor database, of which 4075 (80.1%) were aged 20-49 years. Of the total, 1401 were seropositive. After adjustment for assay characteristics and applying population weights, seropositivity reached peaks in October 2020 (18.5%) and May 2021 (64.9%) reflecting the first two epidemic waves. Unlike the first wave, both urban and rural areas had high seropositivity in the second wave, Balaka (rural, 66.2%, April 2021), Blantyre (urban, 75.6%, May 2021), Lilongwe (urban, 78.0%, May 2021), and Mzuzu (urban, 74.6%, April 2021). Blantyre and Mzuzu also show indications of the start of a third pandemic wave with seroprevalence picking up again in July 2021 (Blantyre, 81.7%; Mzuzu, 71.0%). More first wave sera showed in vitro neutralisation activity against the original variant (78% [7/9]) than the beta variant (22% [2/9]), while more second wave sera showed neutralisation activity against the beta variant (75% [12/16]) than the original variant (63% [10/16]). CONCLUSION: The findings confirm extensive SARS-CoV-2 exposure in Malawi over two epidemic waves with likely poor cross-protection to reinfection from the first on the second wave. The dynamics of SARS-CoV-2 exposure will therefore need to be taken into account in the formulation of the COVID-19 vaccination policy in Malawi and across the region. Future studies should use an adequate sample size for the assessment of neutralisation activity across a panel of SARS-CoV-2 variants of concern/interest to estimate community immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Doadores de Sangue , Vacinas contra COVID-19 , Estudos Transversais , Humanos , Pandemias , Estudos Soroepidemiológicos
14.
Front Immunol ; 12: 733958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566999

RESUMO

The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.


Assuntos
Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Facilitadores , Anticorpos Amplamente Neutralizantes/genética , Engenharia Genética , Anticorpos Anti-HIV/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Testes de Neutralização , Fagocitose , Ligação Proteica , Receptores de IgG/metabolismo , Células THP-1
16.
bioRxiv ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33688657

RESUMO

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

17.
Nat Med ; 27(4): 622-625, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33654292

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.


Assuntos
COVID-19/imunologia , Evasão da Resposta Imune , Testes de Neutralização , SARS-CoV-2/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Doadores de Sangue , Vacinas contra COVID-19/imunologia , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia
18.
bioRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501446

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA