Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 27(27): 275103, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26061830

RESUMO

Due to discrepancies in the literature data the thermodynamic properties of liquid gallium are still in debate. Accurate measurements of adiabatic sound velocities as a function of pressure and temperature have been obtained by the combination of laser picosecond acoustics and surface imaging on sample loaded in diamond anvil cell. From these results the thermodynamic parameters of gallium have been extracted by a numerical procedure up to 10 GPa and 570 K. It is demonstrated that a Murnaghan equation of state accounts well for the whole data set since the isothermal bulk modulus BT has been shown to vary linearly with pressure in the whole temperature range. No evidence for a previously reported liquid-liquid transition has been found in the whole pressure and temperature range explored.

2.
Ultrasonics ; 56: 129-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24852260

RESUMO

Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article.

3.
J Chem Phys ; 140(24): 244201, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985631

RESUMO

Ultrafast acoustics measurements on liquid mercury have been performed at high pressure and temperature in a diamond anvil cell using picosecond acoustic interferometry. We extract the density of mercury from adiabatic sound velocities using a numerical iterative procedure. We also report the pressure and temperature dependence of the thermal expansion, isothermal and adiabatic compressibility, bulk modulus, and pressure derivative of the latter up to 7 GPa and 520 K. We finally show that the sound velocity follows a scaling law as a function of density in the overall measured metallic state.

4.
Opt Lett ; 35(20): 3510-2, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20967116

RESUMO

We show that the propagation of coherent acoustic phonons generated by femtosecond optical excitation can be clearly resolved using a probe laser in the middle UV (MUV) range. The MUV probe is easily produced from a high-repetition-rate femtosecond laser and a homemade frequency tripler. We present various experimental results that demonstrate efficient and high frequency detection of acoustic phonons. Thus, we show that the MUV range offers a unique way to reach higher frequencies and probe smaller objects in ultrafast acoustics.

5.
Phys Rev Lett ; 104(6): 067402, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366853

RESUMO

The position and strength of the boson peak in silica glass vary considerably with temperature T. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin-scattering measurements are presented which allow determining the T dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with T and to set the energy scale for the soft potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA