Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(34): 38744-38750, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805977

RESUMO

The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions, etc., can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor-insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor-insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high-quality heterojunction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics.

2.
ACS Appl Mater Interfaces ; 10(43): 37555-37565, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30299919

RESUMO

We investigated thermal properties of the epoxy-based composites with the high loading fraction-up to f ≈ 45 vol %-of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction fT > 20 vol %. The graphene loading required for achieving thermal percolation, fT, was substantially higher than the loading, fE, for electrical percolation. Graphene fillers outperformed boron nitride fillers in the thermal conductivity enhancement. It was established that thermal transport in composites with high filler loadings, f ≥ fT, is dominated by heat conduction via the network of percolating fillers. Unexpectedly, we determined that the thermal transport properties of the high loading composites were influenced strongly by the cross-plane thermal conductivity of the quasi-two-dimensional fillers. The obtained results shed light on the debated mechanism of the thermal percolation, and facilitate the development of the next generation of the efficient thermal interface materials for electronic applications.

3.
Sci Rep ; 7(1): 6419, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743980

RESUMO

It is of paramount importance to improve the control over large area growth of high quality molybdenum disulfide (MoS2) and other types of 2D dichalcogenides. Such atomically thin materials have great potential for use in electronics, and are thought to make possible the first real applications of spintronics. Here in, a facile and reproducible method of producing wafer scale atomically thin MoS2 layers has been developed using the incorporation of a chelating agent in a common organic solvent, dimethyl sulfoxide (DMSO). Previously, solution processing of a MoS2 precursor, ammonium tetrathiomolybdate ((NH4)2MoS4), and subsequent thermolysis was used to produce large area MoS2 layers. Our work here shows that the use of ethylenediaminetetraacetic acid (EDTA) in DMSO exerts superior control over wafer coverage and film thickness, and the results demonstrate that the chelating action and dispersing effect of EDTA is critical in growing uniform films. Raman spectroscopy, photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and high-resolution scanning transmission electron microscopy (HR-STEM) indicate the formation of homogenous few layer MoS2 films at the wafer scale, resulting from the novel chelant-in-solution method.

4.
Nanoscale ; 8(34): 15774-82, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27531559

RESUMO

We report on the current-carrying capacity of the nanowires made from the quasi-1D van der Waals metal tantalum triselenide capped with quasi-2D boron nitride. The chemical vapor transport method followed by chemical and mechanical exfoliation were used to fabricate the mm-long TaSe3 wires with the lateral dimensions in the 20 to 70 nm range. Electrical measurements establish that the TaSe3/h-BN nanowire heterostructures have a breakdown current density exceeding 10 MA cm(-2)-an order-of-magnitude higher than that for copper. Some devices exhibited an intriguing step-like breakdown, which can be explained by the atomic thread bundle structure of the nanowires. The quasi-1D single crystal nature of TaSe3 results in a low surface roughness and in the absence of the grain boundaries. These features can potentially enable the downscaling of the nanowires to lateral dimensions in a few-nm range. Our results suggest that quasi-1D van der Waals metals have potential for applications in the ultimately downscaled local interconnects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA