RESUMO
BACKGROUND: The prevalence of left atrial appendage (LAA) thrombus detection by transesophageal echocardiogram (TEE) in patients with non-valvular atrial fibrillation (AF) anticoagulated with apixaban is not well defined and identification of additional risk factors may help guide the selection process for pre-procedural TEE. The purpose of our study was to retrospectively analyze the prevalence of LAA thrombus detection by TEE in patients continuously anticoagulated with apixaban for ≥ 4 wk and evaluate for any cardiac risk factors or echocardiographic characteristics which may serve as predictors of thrombus formation. AIM: To retrospectively analyze the prevalence of LAA thrombus detection by TEE in patients continuously anticoagulated with apixaban. METHODS: Clinical and echocardiographic data for 820 consecutive patients with AF undergoing TEE at Augusta University Medical Center over a four-year period were retrospectively analyzed. All patients (apixaban: 226) with non-valvular AF and documented compliance with apixaban for ≥ 4 wk prior to index TEE were included. RESULTS: Following ≥ 4 wk of continuous anticoagulation with apixaban, the prevalence of LAA thrombus and LAA thrombus/dense spontaneous echocardiographic contrast was 3.1% and 6.6%, respectively. Persistent AF, left ventricular ejection fraction < 30%, severe LA dilation, and reduced LAA velocity were associated with thrombus formation. Following multivariate logistic regression, persistent AF (OR: 7.427; 95%CI: 1.02 to 53.92; P = 0.0474), and reduced LAA velocity (OR: 1.086; 95%CI: 1.010 to 1.187; P = 0.0489) were identified as independent predictors of LAA thrombus. No Thrombi were detected in patients with a CHA2DS2-VASc score ≤ 1. CONCLUSION: Among patients with non-valvular AF and ≥ 4 wk of anticoagulation with apixaban, the prevalence of LAA thrombus detected by TEE was 3.1%. This suggests that continuous therapy with apixaban does not completely eliminate the risk of LAA thrombus and that TEE prior to cardioversion or catheter ablation may be of benefit in patients with multiple risk factors.
RESUMO
DNA methylation is a well-established epigenetic mark, whose pattern throughout the genome, especially in the promoter or CpG islands, may be modified in a cell at a disease stage. Recently developed probabilistic approaches allow distributing methylation signals at nucleotide resolution from MethylCap-seq data. Standard statistical methods for detecting differential methylation suffer from 'curse of dimensionality' and sparsity in signals, resulting in high false-positive rates. Strong correlation of signals between CG sites also yields spurious results. In this article, we review applicability of high-dimensional mean vector tests for detection of differentially methylated regions (DMRs) and compare and contrast such tests with other methods for detecting DMRs. Comprehensive simulation studies are conducted to highlight the performance of these tests under different settings. Based on our observation, we make recommendations on the optimal test to use. We illustrate the superiority of mean vector tests in detecting cancer-related canonical gene pathways, which are significantly enriched for acute myeloid leukemia and ovarian cancer.