Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Am J Transplant ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522826

RESUMO

Neutrophils exacerbate pulmonary ischemia-reperfusion injury (IRI) resulting in poor short and long-term outcomes for lung transplant recipients. Glycolysis powers neutrophil activation, but it remains unclear if neutrophil-specific targeting of this pathway will inhibit IRI. Lipid nanoparticles containing the glycolysis flux inhibitor 2-deoxyglucose (2-DG) were conjugated to neutrophil-specific Ly6G antibodies (NP-Ly6G[2-DG]). Intravenously administered NP-Ly6G(2-DG) to mice exhibited high specificity for circulating neutrophils. NP-Ly6G(2-DG)-treated neutrophils were unable to adapt to hypoglycemic conditions of the lung airspace environment as evident by the loss of demand-induced glycolysis, reductions in glycogen and ATP content, and an increased vulnerability to apoptosis. NP-Ly6G(2-DG) treatment inhibited pulmonary IRI following hilar occlusion and orthotopic lung transplantation. IRI protection was associated with less airspace neutrophil extracellular trap generation, reduced intragraft neutrophilia, and enhanced alveolar macrophage efferocytotic clearance of neutrophils. Collectively, our data show that pharmacologically targeting glycolysis in neutrophils inhibits their activation and survival leading to reduced pulmonary IRI.

3.
Trends Mol Med ; 29(8): 584-585, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321951

RESUMO

Fatty acid binding proteins (FABPs) transport fatty acids (FA) into cells as an energy source, and their inhibition suppressed tumor proliferation in solid tumors. Multiple myeloma (MM) is a hematologic malignancy, known for disrupted protein metabolism including high proteasome activity, where proteasome inhibitors made a dramatic improvement in its treatment. Recent discovery found FABPs as a novel metabolic pathway in MM, which will have an impact on understanding the biology and on therapeutic application in MM.


Assuntos
Proteínas de Ligação a Ácido Graxo , Mieloma Múltiplo , Humanos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Citoplasma/metabolismo
5.
Cell Death Dis ; 13(11): 969, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400754

RESUMO

Multiple myeloma (MM) causes approximately 20% of deaths from blood cancers. Notwithstanding significant therapeutic progress, such as with proteasome inhibitors (PIs), MM remains incurable due to the development of resistance. mTORC1 is a key metabolic regulator, which frequently becomes dysregulated in cancer. While mTORC1 inhibitors reduce MM viability and synergize with other therapies in vitro, clinically, mTORC1 inhibitors are not effective for MM. Here we show that the inactivation of mTORC1 is an intrinsic response of MM to PI treatment. Genetically enforced hyperactivation of mTORC1 in MM was sufficient to compromise tumorigenicity in mice. In vitro, mTORC1-hyperactivated MM cells gained sensitivity to PIs and hypoxia. This was accompanied by increased mitochondrial stress and activation of the eIF2α kinase HRI, which initiates the integrated stress response. Deletion of HRI elevated the toxicity of PIs in wt and mTORC1-activated MM. Finally, we identified the drug PMA as a robust inducer of mTORC1 activity, which synergized with PIs in inducing MM cell death. These results help explain the clinical inefficacy of mTORC1 inhibitors in MM. Our data implicate mTORC1 induction and/or HRI inhibition as pharmacological strategies to enhance MM therapy by PIs.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transdução de Sinais , eIF-2 Quinase/metabolismo
6.
Blood Cancer J ; 12(7): 110, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853853

RESUMO

Bromodomain-containing protein 9 (BRD9), an essential component of the SWI/SNF chromatin remodeling complex termed ncBAF, has been established as a therapeutic target in a subset of sarcomas and leukemias. Here, we used novel small molecule inhibitors and degraders along with RNA interference to assess the dependency on BRD9 in the context of diverse hematological malignancies, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) model systems. Following depletion of BRD9 protein, AML cells undergo terminal differentiation, whereas apoptosis was more prominent in ALL and MM. RNA-seq analysis of acute leukemia and MM cells revealed both unique and common signaling pathways affected by BRD9 degradation, with common pathways including those associated with regulation of inflammation, cell adhesion, DNA repair and cell cycle progression. Degradation of BRD9 potentiated the effects of several chemotherapeutic agents and targeted therapies against AML, ALL, and MM. Our findings support further development of therapeutic targeting of BRD9, alone or combined with other agents, as a novel strategy for acute leukemias and MM.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Mieloma Múltiplo , Fatores de Transcrição , Antineoplásicos/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Transplant Cell Ther ; 28(8): 446-454, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605882

RESUMO

The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup conducted a workshop on Immune and Cellular Therapy in Multiple Myeloma on January 7, 2022. This workshop included presentations by basic, translational, and clinical researchers with expertise in plasma cell dyscrasias. Four main topics were discussed: platforms for myeloma disease evaluation, insights into pathophysiology, therapeutic target and resistance mechanisms, and cellular therapy for multiple myeloma. Here we provide a comprehensive summary of these workshop presentations.


Assuntos
Mieloma Múltiplo , Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Humanos , Mieloma Múltiplo/terapia
8.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35428704

RESUMO

Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow (BM) and represents the second most common hematological malignancy in the world. The MM tumor microenvironment (TME) within the BM niche consists of a wide range of elements which play important roles in supporting MM disease progression, survival, proliferation, angiogenesis, as well as drug resistance. Together, the TME fosters an immunosuppressive environment in which immune recognition and response are repressed. Macrophages are a central player in the immune system with diverse functions, and it has been long established that macrophages play a critical role in both inducing direct and indirect immune responses in cancer. Tumor-associated macrophages (TAMs) are a major population of cells in the tumor site. Rather than contributing to the immune response against tumor cells, TAMs in many cancers are found to exhibit protumor properties including supporting chemoresistance, tumor proliferation and survival, angiogenesis, immunosuppression, and metastasis. Targeting TAM represents a novel strategy for cancer immunotherapy, which has potential to indirectly stimulate cytotoxic T cell activation and recruitment, and synergize with checkpoint inhibitors and chemotherapies. In this review, we will provide an updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM.


Assuntos
Mieloma Múltiplo , Macrófagos Associados a Tumor , Biologia , Humanos , Imunoterapia , Mieloma Múltiplo/tratamento farmacológico , Neovascularização Patológica , Microambiente Tumoral
9.
Bioorg Med Chem ; 59: 116659, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217358

RESUMO

The synthesis of d-glucoheptose derivative containing a boronic moiety is described herein. Starting from benzyl 6,7-dideoxy-2,3,4-tri-O-benzyl-ß-d-gluco-ept-6-enopyranoside, the introduction of the boronic acid was performed through a metathesis reaction by using MIDA vinyl boronic acid and the 2nd generation Grubbs catalyst. Hydrogenation led to the final product in only two reaction steps. This new sugar-containing boronic acid in the skeleton could mimic carbohydrate behavior and follow the glucose uptake in living cells. The in vitro toxicity tests performed in fibroblasts and glioma tumor cell lines showed minimal toxicity. Boron uptake measured using ICP-MS was minimal in fibroblasts, while in glioma cells showed a value of 6 ng of total boron accumulation per mg of cells, implying that compound 1a is able to accumulate selectively in the tumor tissues compared to normal.


Assuntos
Terapia por Captura de Nêutron de Boro , Glioma , Boro/farmacologia , Compostos de Boro/farmacologia , Ácidos Borônicos/farmacologia , Carboidratos , Linhagem Celular Tumoral , Glioma/metabolismo , Glucose , Humanos
10.
J Cell Mol Med ; 26(3): 940-944, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35014164

RESUMO

Immunotherapy is an attractive approach for treating cancer. T-cell engagers (TCEs) are a type of immunotherapy that are highly efficacious; however, they are challenged by weak T-cell activation and short persistence. Therefore, alternative solutions to induce greater activation and persistence of T cells during TCE immunotherapy is needed. Methods to activate T cells include the use of lectins, such as phytohemagglutinin (PHA). PHA has not been used to activate T cells in vivo, for immunotherapy, due to its biological instability and toxicity. An approach to overcome the limitations of PHA while also preserving its function is needed. In this study, we report a liposomal PHA which increased PHA stability, reduced toxicity and performed as an immunotherapeutic that is able to activate T cells for the use in future cancer immunotherapies to circumvent current obstacles in immunosuppression and T-cell exhaustion.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunoterapia/métodos , Ativação Linfocitária , Neoplasias/terapia , Fito-Hemaglutininas/farmacologia
11.
Sci Rep ; 11(1): 19343, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588522

RESUMO

Cancer patients undergo detrimental toxicities and ineffective treatments especially in the relapsed setting, due to failed treatment attempts. The development of a tool that predicts the clinical response of individual patients to therapy is greatly desired. We have developed a novel patient-derived 3D tissue engineered bone marrow (3DTEBM) technology that closely recapitulate the pathophysiological conditions in the bone marrow and allows ex vivo proliferation of tumor cells of hematologic malignancies. In this study, we used the 3DTEBM to predict the clinical response of individual multiple myeloma (MM) patients to different therapeutic regimens. We found that while no correlation was observed between in vitro efficacy in classic 2D culture systems of drugs used for MM with their clinical efficacious concentration, the efficacious concentration in the 3DTEBM were directly correlated. Furthermore, the 3DTEBM model retrospectively predicted the clinical response to different treatment regimens in 89% of the MM patient cohort. These results demonstrated that the 3DTEBM is a feasible platform which can predict MM clinical responses with high accuracy and within a clinically actionable time frame. Utilization of this technology to predict drug efficacy and the likelihood of treatment failure could significantly improve patient care and treatment in many ways, particularly in the relapsed and refractory setting. Future studies are needed to validate the 3DTEBM model as a tool for predicting clinical efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medula Óssea/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Técnicas de Cultura de Tecidos/métodos , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Projetos Piloto , Cultura Primária de Células , Engenharia Tecidual , Resultado do Tratamento , Células Tumorais Cultivadas
12.
Leuk Res Rep ; 16: 100268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34584838

RESUMO

CD47 is a surface glycoprotein expressed by host cells to impede phagocytosis upon binding to macrophage SIRPα, thereby represents an immune checkpoint known as the "don't-eat-me" signal. However, accumulating evidence shows that solid and hematologic tumor cells overexpress CD47 to escape immune surveillance. Thus, targeting the CD47-SIRPa axis by limiting the activity of this checkpoint has emerged as a key area of research. In this review, we will provide an update on the landscape of CD47-targeting antibodies for hematological malignancies, including monoclonal and bi-specific antibodies, with a special emphasis on agents in clinical trials and novel approaches to overcome toxicity.

13.
Oncotarget ; 12(19): 1878-1885, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548905

RESUMO

Acute myeloid leukemia (AML) is the most common type of leukemia and has a 5-year survival rate of 25%. The standard-of-care for AML has not changed in the past few decades. Promising immunotherapy options are being developed for the treatment of AML; yet, these regimens require highly laborious and sophisticated techniques. We create nanoTCEs using liposomes conjugated to monoclonal antibodies to enable specific binding. We also recreate the bone marrow niche using our 3D culture system and use immunocompromised mice to enable use of human AML and T cells with nanoTCEs. We show that CD33 is ubiquitously present on AML cells. The CD33 nanoTCEs bind preferentially to AML cells compared to Isotype. We show that nanoTCEs effectively activate T cells and induce AML killing in vitro and in vivo. Our findings suggest that our nanoTCE technology is a novel and promising immuno-therapy for the treatment of AML and provides a basis for supplemental investigations for the validation of using nanoTCEs in larger animals and patients.

14.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201007

RESUMO

MM is the second most common hematological malignancy and represents approximately 20% of deaths from hematopoietic cancers. The advent of novel agents has changed the therapeutic landscape of MM treatment; however, MM remains incurable. T cell-based immunotherapy such as BTCEs is a promising modality for the treatment of MM. This review article discusses the advancements and future directions of BTCE treatments for MM.

15.
Leuk Lymphoma ; 62(10): 2457-2465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33993837

RESUMO

Chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL) are hematological malignancies that remain incurable despite novel treatments. In order to improve current treatments and clinical efficacy, there remains a need for more complex in vitro models that mimic the intricate human leukemic microenvironment. This study aimed to use 3D tissue engineered plasma cultures (3DTEPC) derived from CML, AML and CLL patients to promote proliferation of leukemic cells for use as a drug screening tool for treatment. 3DTEPC supported the growth of primary CML, AML and CLL cells and also induced significantly more drug resistance in CML, AML and CLL cell lines compared to 2D. The 3DTEPC created a more physiologically relevant environment for leukemia cell proliferation, provided a reliable model for growing leukemia patient samples, and serves as a relevant tool for drug screening and personalized medicine.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Proliferação de Células , Resistência a Medicamentos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Microambiente Tumoral
16.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477563

RESUMO

E-selectin is a vascular adhesion molecule expressed mainly on endothelium, and its primary role is to facilitate leukocyte cell trafficking by recognizing ligand surface proteins. E-selectin gained a new role since it was demonstrated to be involved in cancer cell trafficking, stem-like properties and therapy resistance. Therefore, being expressed in the tumor microenvironment, E-selectin can potentially be used to eradicate cancer. Uproleselan (also known as GMI-1271), a specific E-selectin antagonist, has been tested on leukemia, myeloma, pancreatic, colon and breast cancer cells, most of which involve the bone marrow as a primary or as a metastatic tumor site. This novel therapy disrupts the tumor microenvironment by affecting the two main steps of metastasis-extravasation and adhesion-thus blocking E-selectin reduces tumor dissemination. Additionally, uproleselan mobilized cancer cells from the protective vascular niche into the circulation, making them more susceptible to chemotherapy. Several preclinical and clinical studies summarized herein demonstrate that uproleselan has favorable safety and pharmacokinetics and is a tumor microenvironment-disrupting agent that improves the efficacy of chemotherapy, reduces side effects such as neutropenia, intestinal mucositis and infections, and extends overall survival. This review highlights the critical contribution of E-selectin and its specific antagonist, uproleselan, in the regulation of cancer growth, dissemination, and drug resistance in the context of the bone marrow microenvironment.

17.
Leukemia ; 35(8): 2346-2357, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33479469

RESUMO

T-cell-based immunotherapy, such as CAR-T cells and bispecific T-cell engagers (BiTEs), has shown promising clinical outcomes in many cancers; however, these therapies have significant limitations, such as poor pharmacokinetics and the ability to target only one antigen on the cancer cells. In multiclonal diseases, these therapies confer the development of antigen-less clones, causing tumor escape and relapse. In this study, we developed nanoparticle-based bispecific T-cell engagers (nanoBiTEs), which are liposomes decorated with anti-CD3 monoclonal antibodies (mAbs) targeting T cells, and mAbs targeting the cancer antigen. We also developed a nanoparticle that targets multiple cancer antigens by conjugating multiple mAbs against multiple cancer antigens for T-cell engagement (nanoMuTEs). NanoBiTEs and nanoMuTEs have a long half-life of about 60 h, which enables once-a-week administration instead of continuous infusion, while maintaining efficacy in vitro and in vivo. NanoMuTEs targeting multiple cancer antigens showed greater efficacy in myeloma cells in vitro and in vivo, compared to nanoBiTEs targeting only one cancer antigen. Unlike nanoBiTEs, treatment with nanoMuTEs did not cause downregulation (or loss) of a single antigen, and prevented the development of antigen-less tumor escape. Our nanoparticle-based immuno-engaging technology provides a solution for the major limitations of current immunotherapy technologies.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Mieloma Múltiplo/terapia , Nanopartículas/administração & dosagem , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/imunologia , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Nanopartículas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Radiat Oncol Biol Phys ; 109(5): 1483-1494, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253820

RESUMO

PURPOSE: Cervical cancer represents the fourth most frequent malignancy in the world among women, and mortality has remained stable for the past 4 decades. Intravenous cisplatin with concurrent radiation therapy is the standard-of-care for patients with local and regional cervical cancer. However, cisplatin induces serious dose-limiting systemic toxicities and recurrence frequently occurs. In this study, we aimed to develop an intracervical drug delivery system that allows cisplatin release directly into the tumor and minimize systemic side effects. METHODS AND MATERIALS: Twenty patient biopsies and 5 cell lines treated with cisplatin were analyzed for platinum content using inductively coupled plasma mass spectrometry. Polymeric implants loaded with cisplatin were developed and evaluated for degradation and drug release. The effect of local or systemic cisplatin delivery on drug biodistribution as well as tumor burden were evaluated in vivo, in combination with radiation therapy. RESULTS: Platinum levels in patient biopsies were 6-fold lower than the levels needed for efficacy and radiosensitization in vitro. Cisplatin local delivery implant remarkably improved drug specificity to the tumor and significantly decreased accumulation in the blood, kidney, and other distant normal organs, compared with traditional systemic delivery. The localized treatment further resulted in complete inhibition of tumor growth. CONCLUSIONS: The current standard-of-care systemic administration of cisplatin provides a subtherapeutic dose. We developed a polymeric drug delivery system that delivered high doses of cisplatin directly into the cervical tumor, while lowering drug accumulation and consequent side effects in normal tissues. Moving forward, these data will be used as the basis of a future first-in-human clinical trial to test the efficacy of localized cisplatin as adjuvant or neoadjuvant chemotherapy in local and regional cervical cancer.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Injeções Intralesionais/métodos , Radiossensibilizantes/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Biópsia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Cisplatino/efeitos adversos , Cisplatino/análise , Cisplatino/farmacocinética , Implantes de Medicamento , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Polímeros/administração & dosagem , Radiossensibilizantes/efeitos adversos , Radiossensibilizantes/farmacocinética , Distribuição Tecidual , Carga Tumoral , Neoplasias do Colo do Útero/química , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
19.
Nat Commun ; 11(1): 6037, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247158

RESUMO

Drug resistance and dose-limiting toxicities are significant barriers for treatment of multiple myeloma (MM). Bone marrow microenvironment (BMME) plays a major role in drug resistance in MM. Drug delivery with targeted nanoparticles have been shown to improve specificity and efficacy and reduce toxicity. We aim to improve treatments for MM by (1) using nanoparticle delivery to enhance efficacy and reduce toxicity; (2) targeting the tumor-associated endothelium for specific delivery of the cargo to the tumor area, and (3) synchronizing the delivery of chemotherapy (bortezomib; BTZ) and BMME-disrupting agents (ROCK inhibitor) to overcome BMME-induced drug resistance. We find that targeting the BMME with P-selectin glycoprotein ligand-1 (PSGL-1)-targeted BTZ and ROCK inhibitor-loaded liposomes is more effective than free drugs, non-targeted liposomes, and single-agent controls and reduces severe BTZ-associated side effects. These results support the use of PSGL-1-targeted multi-drug and even non-targeted liposomal BTZ formulations for the enhancement of patient outcome in MM.


Assuntos
Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Nanopartículas/química , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipossomos , Glicoproteínas de Membrana/metabolismo , Camundongos , Selectina-P/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral , Microambiente Tumoral/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo
20.
Cancers (Basel) ; 12(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012878

RESUMO

Multiple myeloma (MM) remains to be incurable despite recent therapeutic advances. CD47, an immune checkpoint known as the "don't eat me" signal, is highly expressed on the surface of various cancers, allowing cancer cells to send inhibitory signals to macrophages and impede phagocytosis and immune response. In this study, we hypothesized that blocking the "don't eat me" signaling using an anti-CD47 monoclonal antibody will induce killing of MM cells. We report that CD47 expression was directly correlated with stage of the disease, from normal to MGUS to MM. Moreover, MM cells had remarkably higher CD47 expression than other cell populations in the bone marrow. These findings indicate that CD47 is specifically expressed on MM and can be used as a potential therapeutic target. Further, blocking of CD47 using an anti-CD47 antibody induced immediate activation of macrophages, which resulted in induction of phagocytosis and killing of MM cells in the 3D-tissue engineered bone marrow model, as early as 4 hours. These results suggest that macrophage checkpoint immunotherapy by blocking the CD47 "don't eat me" signal is a novel and promising strategy for the treatment of MM, providing a basis for additional studies to validate these effects in vivo and in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA