Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
PLoS One ; 19(1): e0294526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241211

RESUMO

PURPOSE: VitreoDx is an experimental device enabling push-button collection of a neat vitreous liquid biopsy incidental to an intravitreal injection. We explored the ability of the device to collect a sample usable for proteomic biomarker discovery and testing. DESIGN: Pilot study using ex vivo human eyes. METHODS: Non-vitrectomized, human eyes from nine donors 75-91 years of age were refrigerated in BSS and used within 5 days of death. Four VitreoDx devices fitted with 25G needles, and four staked needle insulin syringes with 30G needles, were inserted at equal intervals through the pars plana of each eye and held in place by a fixture. The sampling mode of each VitreoDx device was triggered to attempt to acquire a liquid biopsy up to 70 µL. The plunger of each insulin syringe was retracted to attempt to obtain a liquid biopsy with a maximum volume of 50 µL. Samples acquired with the VitreoDx were extracted to polypropylene cryovials, refrigerated to -80 ºC, and sent for offsite proteomic analysis by proximity extension assay with a focus on panels containing approved and pipelined drug targets for neovascular disease and inflammatory factors. RESULTS: Of the attempted liquid biopsies with the novel 25G VitreoDx, 92% (66 of 72) resulted in successful acquisition (>25 µL) while 89% (64 of 72) attempted by a traditional 30G needle resulted in a successful acquisition. Sample volume sufficient for proteomics array analysis was acquired by the VitreoDx for every eye. Detectable protein was found for 151 of 166 unique proteins assayed in at least 25% of eyes sampled by VitreoDx. CONCLUSIONS: The high acquisition rate achieved by the prototype was similar to that achieved in previous clinical studies where a standard syringe was used with a 25G needle to biopsy vitreous fluid directly prior to standard intravitreal injection. Successful aspiration rates were likewise high for 30G needles. Together, these suggest that it is possible to routinely acquire liquid vitreous biopsies from patients who typically receive intravitreal injections with an injection device using a standard size needle without a vitreous cutter. Protein analysis shows that proteins of interest survive the sampling mechanism and may have potential to direct care in the future.


Assuntos
Insulinas , Proteômica , Humanos , Recém-Nascido , Injeções Intravítreas , Estudos de Viabilidade , Projetos Piloto , Corpo Vítreo/metabolismo , Biópsia , Agulhas , Biópsia Líquida , Insulinas/metabolismo
2.
Ocul Surf ; 29: 331-385, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087043

RESUMO

The word "elective" refers to medications and procedures undertaken by choice or with a lower grade of prioritization. Patients usually use elective medications or undergo elective procedures to treat pathologic conditions or for cosmetic enhancement, impacting their lifestyle positively and, thus, improving their quality of life. However, those interventions can affect the homeostasis of the tear film and ocular surface. Consequently, they generate signs and symptoms that could impair the patient's quality of life. This report describes the impact of elective topical and systemic medications and procedures on the ocular surface and the underlying mechanisms. Moreover, elective procedures performed for ocular diseases, cosmetic enhancement, and non-ophthalmic interventions, such as radiotherapy and bariatric surgery, are discussed. The report also evaluates significant anatomical and biological consequences of non-urgent interventions to the ocular surface, such as neuropathic and neurotrophic keratopathies. Besides that, it provides an overview of the prophylaxis and management of pathological conditions resulting from the studied interventions and suggests areas for future research. The report also contains a systematic review investigating the quality of life among people who have undergone small incision lenticule extraction (SMILE). Overall, SMILE refractive surgery seems to cause more vision disturbances than LASIK in the first month post-surgery, but less dry eye symptoms in long-term follow up.


Assuntos
Ceratomileuse Assistida por Excimer Laser In Situ , Miopia , Humanos , Estilo de Vida , Miopia/cirurgia , Qualidade de Vida , Lágrimas
3.
Bioorg Med Chem ; 85: 117289, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094433

RESUMO

Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.


Assuntos
Clioquinol , Ensaios de Triagem em Larga Escala , Humanos , Metaloproteinase 14 da Matriz , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768503

RESUMO

A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.


Assuntos
Metaloproteinase 14 da Matriz , Metaloendopeptidases , Colagenases , Metaloproteinases da Matriz , Metaloproteinases da Matriz Associadas à Membrana , Metaloendopeptidases/metabolismo , Proteínas , Especificidade por Substrato
5.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672254

RESUMO

Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.


Assuntos
Neovascularização da Córnea , Vasos Linfáticos , Humanos , Linfangiogênese , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Córnea/metabolismo , Vasos Linfáticos/metabolismo
6.
Cells ; 11(20)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36291115

RESUMO

Limbal stem cells constitute an important cell population required for regeneration of the corneal epithelium. If insults to limbal stem cells or their niche are sufficiently severe, a disease known as limbal stem cell deficiency occurs. In the absence of functioning limbal stem cells, vision-compromising conjunctivalization of the corneal epithelium occurs, leading to opacification, inflammation, neovascularization, and chronic scarring. Limbal stem cell transplantation is the standard treatment for unilateral cases of limbal stem cell deficiency, but bilateral cases require allogeneic transplantation. Herein we review the current therapeutic utilization of limbal stem cells. We also describe several limbal stem cell markers that impact their phenotype and function and discuss the possibility of modulating limbal stem cells and other sources of stem cells to facilitate the development of novel therapeutic interventions. We finally consider several hurdles for widespread adoption of these proposed methodologies and discuss how they can be overcome to realize vision-restoring interventions.


Assuntos
Doenças da Córnea , Limbo da Córnea , Humanos , Doenças da Córnea/terapia , Córnea , Células-Tronco , Homeostase
7.
Front Physiol ; 13: 846936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392370

RESUMO

Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.

8.
Transl Vis Sci Technol ; 10(3): 21, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003958

RESUMO

Purpose: The purpose of this study was to compare the low degree/high degree (LD/HD) and Zernike Expansion simulation outcomes evaluating the corneal wavefront changes after theoretical conventional and customized aspheric photorefractive ablations. Methods: Initial anterior corneal surface profiles were modeled as conic sections with pre-operative apical curvature, R0, and asphericity, Q0. Postoperative apical curvature, R1, was computed from intended defocus correction, D, diameter zone, S, and target postoperative asphericity, Q1. Coefficients of both Zernike and LD/HD polynomial expansions of the rotationally symmetrical corneal profile were computed using scalar products. We modeled different values of D, R0, Q0, S, and ΔQ = Q1 to Q0. The corresponding postoperative changes in defocus (Δz20 vs. Δg20), fourth order (Δz40 vs. Δg40) and sixth order (Δz60 vs. Δg60) Zernike and LD/HD spherical aberrations (SAs) were compared. In addition, retrospective clinical data and wavefront measurements were obtained from two examples of two patient eyes before and after corneal laser photoablation. Results: The z20, varied with both R0 and Q0, whereas the LD/HD defocus coefficient, g20, was relatively robust to changes in asphericity. Variations of apical curvature better correlated with defocus and ΔQ with SA coefficients in the LD/HD classification. The impact of ΔQ was null on g20 but induced significant linear variations in z20 and fourth order SA coefficients. LD/HD coefficients provided a good correlation with the visual performances of the operated eyes. Conclusions: Simulated variations in postoperative corneal profile and wavefront expansion using the LD/HD approach showed good correlations between defocus and asphericity variations with variations in corneal curvature and SA coefficients, respectively. Translational Relevance: The relevance of this study was to provide a clinically relevant alternative to Zernike polynomials for the interpretation of wavefront changes after customized aspheric corrections.


Assuntos
Córnea , Luz , Simulação por Computador , Humanos , Lasers , Estudos Retrospectivos
9.
Surv Ophthalmol ; 66(6): 960-976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33811911

RESUMO

Dry eye disease (DED) is a common ocular surface condition causing symptoms of significant discomfort, visual disturbance, and pain. With recent advancements, DED has become recognized as a chronic self-perpetuating inflammatory condition triggered by various internal and environmental factors. DED has been shown to arise from the activation of both the innate and adaptive immune systems, leading to corneal epithelium and lacrimal gland dysfunction. While the cornea is normally avascular and thus imbued with angiogenic and lymphangiogenic privilege, various DED models have revealed activated corneal antigen-presenting cells in regional lymph nodes, suggesting the formation of new corneal lymphatic vessels in DED. The recent availability of reliable lymphatic cell surface markers such as LYVE-1 has made it possible to study lymphangiogenesis. Accordingly, numerous studies have been published within the last decade discussing the role of lymphangiogenesis in DED pathology. We systematically review the literature to identify and evaluate studies presenting data on corneal lymphangiogenesis in DED. There is considerable evidence supporting corneal lymphangiogenesis as a central mediator of DED pathogenesis. These findings suggest that anti-lymphangiogenic therapeutic strategies may be a viable option for the treatment of DED, a conclusion supported by the limited number of reported clinical trials examining anti-lymphangiogenic modalities in DED.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Vasos Linfáticos , Córnea , Síndromes do Olho Seco/etiologia , Humanos , Linfangiogênese/fisiologia
11.
Curr Opin Ophthalmol ; 31(5): 447-453, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32694268

RESUMO

PURPOSE OF REVIEW: To highlight artificial intelligence applications in ophthalmology during the COVID-19 pandemic that can be used to: describe ocular findings and changes correlated with COVID-19; extract information from scholarly articles on SARS-CoV-2 and COVID-19 specific to ophthalmology; and implement efficient patient triage and telemedicine care. RECENT FINDINGS: Ophthalmology has been leading in artificial intelligence and technology applications. With medical imaging analysis, pixel-annotated distinguishable features on COVID-19 patients may help with noninvasive diagnosis and severity outcome predictions. Using natural language processing (NLP) and data integration methods, topic modeling on more than 200 ophthalmology-related articles on COVID-19 can summarize ocular manifestations, viral transmission, treatment strategies, and patient care and practice management. Artificial intelligence for telemedicine applications can address the high demand, prioritize and triage patients, as well as improve at home-monitoring devices and secure data transfers. SUMMARY: COVID-19 is significantly impacting the way we are delivering healthcare. Given the already successful implementation of artificial intelligence applications and telemedicine in ophthalmology, we expect that these systems will be embraced more as tools for research, education, and patient care.


Assuntos
Inteligência Artificial/tendências , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , COVID-19 , Humanos , Oftalmologia , Pandemias , SARS-CoV-2 , Telemedicina/tendências
12.
Angiogenesis ; 23(3): 459-477, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372335

RESUMO

Blood vessels and nerve tissues are critical to the development and functionality of many vital organs. However, little is currently known about their interdependency during development and after injury. In this study, dual fluorescence transgenic reporter mice were utilized to observe blood vessels and nervous tissues in organs postnatally. Thy1-YFP and Flt1-DsRed (TYFD) mice were interbred to achieve dual fluorescence in the offspring, with Thy1-YFP yellow fluorescence expressed primarily in nerves, and Flt1-DsRed fluorescence expressed selectively in blood vessels. Using this dual fluorescent mouse strain, we were able to visualize the networks of nervous and vascular tissue simultaneously in various organ systems both in the physiological state and after injury. Using ex vivo high-resolution imaging in this dual fluorescent strain, we characterized the organizational patterns of both nervous and vascular systems in a diverse set of organs and tissues. In the cornea, we also observed the dynamic patterns of nerve and blood vessel networks following epithelial debridement injury. These findings highlight the versatility of this dual fluorescent strain for characterizing the relationship between nerve and blood vessel growth and organization.


Assuntos
Vasos Sanguíneos , Córnea , Isoanticorpos , Proteínas Luminescentes , Imagem Óptica , Nervos Periféricos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/crescimento & desenvolvimento , Córnea/irrigação sanguínea , Córnea/diagnóstico por imagem , Córnea/inervação , Feminino , Isoanticorpos/biossíntese , Isoanticorpos/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/crescimento & desenvolvimento , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
13.
Protein Pept Lett ; 27(10): 979-988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32268857

RESUMO

BACKGROUND: Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE: The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS: Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS: Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION: Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.


Assuntos
Córnea/metabolismo , Exossomos/metabolismo , Fibroblastos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteômica , Animais , Camundongos , Domínios Proteicos
14.
Biochim Biophys Acta Gen Subj ; 1864(7): 129595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173376

RESUMO

Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.


Assuntos
Encéfalo/fisiologia , Sistema Nervoso , Neurogênese/genética , Neurônios/fisiologia , Animais , Humanos , Camundongos , Camundongos Transgênicos/genética , Fenômenos Fisiológicos do Sistema Nervoso/genética
15.
Protein Pept Lett ; 27(1): 30-40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31553284

RESUMO

BACKGROUND: Lymphatic vessel formation (lymphangiogenesis) plays important roles in cancer metastasis, organ rejection, and lymphedema, but the underlying molecular events remain unclear. Furthermore, despite significant overlap in the molecular families involved in angiogenesis and lymphangiogenesis, little is known about the crosstalk between these processes. The ex vivo aortic ring assay and lymphatic ring assay have enabled detailed studies of vessel sprouting, but harvesting and imaging clear thoracic duct samples remain challenging. Here we present a modified ex vivo dual aortic ring and thoracic duct assay using tissues from dual fluorescence reporter Prox1- GFP/Flt1-DsRed (PGFD) mice, which permit simultaneous visualization of blood and lymphatic endothelial cells. OBJECTIVE: To characterize the concurrent sprouting of intrinsically fluorescent blood and lymphatic vessels from harvested aorta and thoracic duct samples. METHODS: Dual aorta and thoracic duct specimens were harvested from PGFD mice, grown in six types of endothelial cell growth media (one control, five that each lack a specific growth factor), and visualized by confocal fluorescence microscopy. Linear mixed models were used to compare the extent of vessel growth and sprouting over a 28-day period. RESULTS: Angiogenesis occurred prior to lymphangiogenesis in our assay. The control medium generally induced superior growth of both vessel types compared with the different modified media formulations. The greatest decrease in lymphangiogenesis was observed in vascular endothelial growth factor-C (VEGF-C)-devoid medium, suggesting the importance of VEGF-C in lymphangiogenesis. CONCLUSION: The modified ex vivo dual aortic ring and thoracic duct assay represents a powerful tool for studying angiogenesis and lymphangiogenesis in concert.


Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Ducto Torácico/metabolismo , Animais , Aorta/metabolismo , Técnicas Biossensoriais/métodos , Células Endoteliais/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Imagem Óptica , Especificidade de Órgãos , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Sci Rep ; 9(1): 12331, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444394

RESUMO

The role of the corneal epithelium and limbus in corneal avascularity and pathological neovascularization (NV) is not well understood. To investigate the contributions of the corneal and limbal epithelia in angiogenic and lymphangiogenic privilege, we designed five injury models involving debridement of different portions of the cornea and limbus and applied them to the dual-fluorescence reporter Prox1-GFP/Flt1-DsRed mouse, which permits in vivo imaging of blood and lymphatic vessels via fluorescence microscopy. Debridement of the whole cornea resulted in significant hemangiogenesis (HA) and lymphangiogenesis (LA), while that of the whole limbus yielded minimal corneal HA or LA. Following hemilimbal plus whole corneal debridement, corneal NV occurred only through the non-injured aspect of the limbus. Overall, these results suggest that the integrity of the corneal epithelium is important for (lymph)angiogenic privilege, whereas the limbus does not act as a physical or physiologic barrier to invading vessels. In CDh5-CreERT2VEGFR2lox/PGFD mice, conditional deletion of vascular endothelial growth factor receptor 2 in vascular endothelial cells abolished injury-induced HA and LA, demonstrating the utility of this transgenic mouse line for identifying important factors in the process of neovascularization.


Assuntos
Lesões da Córnea/patologia , Corantes Fluorescentes/metabolismo , Limbo da Córnea/irrigação sanguínea , Limbo da Córnea/patologia , Linfangiogênese , Neovascularização Fisiológica , Animais , Desbridamento , Modelos Animais de Doenças , Epitélio Corneano/patologia , Camundongos Transgênicos
17.
Invest Ophthalmol Vis Sci ; 60(6): 2321-2329, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117124

RESUMO

Purpose: Investigate the impact matrix metalloproteinase 14 (MMP14) delivered via exosomes produced by corneal fibroblasts on vascular endothelial growth factor receptor 1 (VEGFR1) cleavage on endothelial cells, and other key processes of angiogenesis. Methods: Proteolysis of VEGFR1 and R2 by the catalytic domain of MMP14 was investigated via immunocytochemistry with anti-VEGFR1, anti-VEGFR2, and anti-MMP14 antibodies. Exosomes were isolated via precipitation and serial ultracentrifugation from wild-type (WT) and MMP14 exon4-deficient corneal fibroblasts. Transmission electron microscopy and nanotracking analysis were used to characterize the isolated exosomes. The presence of MMP14 in exosomes from WT fibroblasts was confirmed by Western blotting. VEGFR1 cleavage upon treatment with WT-derived exosomes, Δexon4-derived exosomes, or the pan-MMP inhibitor GM60001 was examined via in vitro proteolysis analysis using recombinant mouse (rm) VEGFR1/R2. Endothelial cell migration and proliferation were investigated using a Boyden chamber assay and BrdU incorporation, respectively. Results: WT-derived exosomes specifically cleaved rmVEGFR1 in vitro, whereas Δexon4-derived exosomes did not. Treatment with the pan-MMP inhibitor GM6001 effectively inhibited VEGFR1 cleavage by WT-derived exosomes, confirming the role of MMP14 in this cleavage. WT-derived exosomes induced greater endothelial cell migration (P < 0.01) and proliferation (P < 0.5) compared to Δexon4-derived exosomes. Conclusions: MMP14-containing exosomes may be involved in the regulation of corneal neovascularization through degradation of VEGFR1 and VEGFA-induced endothelial cell proliferation and migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Exossomos/fisiologia , Metaloproteinase 14 da Matriz/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Córnea/citologia , Humanos , Imuno-Histoquímica
18.
Cornea ; 38(3): 297-303, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30601286

RESUMO

PURPOSE: To compare direct and indirect LASIK flap thickness measurements using ultrasound and Scheimpflug technology. METHODS: Eighty-two eyes treated with laser-assisted in situ keratomileusis refractive surgery using a femtosecond laser (IntraLase FS150) were prospectively included in the study. Flap thickness was set to 115 µm. Corneal flap thickness was measured using the direct method-ie, ultrasound pachymetry immediately after flap construction in the presence of cavitation bubbles-and indirect methods, with subtraction of intraoperative post-lift corneal thickness measured using ultrasound pachymetry (intrastroma) from preoperative central corneal thickness using ultrasound (Indirect-US) or Scheimpflug thinnest pachymetry (Indirect-Scheimpflug). RESULTS: Mean flap thickness was overestimated using the indirect methods, Indirect-US and Indirect-Scheimpflug (122.6 ± 24.5 µm and 128.1 ± 26.1 µm, respectively; P < 0.0060 and P < 0.0001, respectively). There were no significant correlations between the direct and indirect methods. Indirect-Scheimpflug was significantly higher (P = 0.0122) than Indirect-US. The closest average flap thickness compared with the set parameter of 115 µm was that of the direct method (115.6 ± 8.6 µm; 95% confidence interval: -1.3 to 2.5; P = 0.5163). The direct method provided the lowest SD of all groups (SD: 8.64). CONCLUSIONS: The direct method of flap thickness measurement was the most comparable to the set parameter compared with the indirect subtraction methods. Additional studies are needed to determine which method allows for the most accurate measurement of flap thickness.


Assuntos
Epitélio Corneano/patologia , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Lasers de Excimer/uso terapêutico , Miopia/cirurgia , Retalhos Cirúrgicos , Coleta de Tecidos e Órgãos/métodos , Adulto , Paquimetria Corneana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia de Coerência Óptica/métodos
19.
Angiogenesis ; 21(4): 677-698, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29971641

RESUMO

The study of lymphangiogenesis is an emerging science that has revealed the lymphatic system as a central player in many pathological conditions including cancer metastasis, lymphedema, and organ graft rejection. A thorough understanding of the mechanisms of lymphatic growth will play a key role in the development of therapeutic strategies against these conditions. Despite the known potential of this field, the study of lymphatics has historically lagged behind that of hemangiogenesis. Until recently, significant strides in lymphatic studies were impeded by a lack of lymphatic-specific markers and suitable experimental models compared to those of the more immediately visible blood vasculature. Lymphangiogenesis has also been shown to be a key phenomenon in developmental biological processes, such as cell proliferation, guided migration, differentiation, and cell-to-cell communication, making lymphatic-specific visualization techniques highly desirable and desperately needed. Imaging modalities including immunohistochemistry and in situ hybridization are limited by the need to sacrifice animal models for tissue harvesting at every experimental time point. Moreover, the processes of mounting and staining harvested tissues may introduce artifacts that can confound results. These traditional methods for investigating lymphatic and blood vasculature are associated with several problems including animal variability (e.g., between mice) when replicating lymphatic growth environments and the cost concerns of prolonged, labor-intensive studies, all of which complicate the study of dynamic lymphatic processes. With the discovery of lymphatic-specific markers, researchers have been able to develop several lymphatic and blood vessel-specific, promoter-driven, fluorescent-reporter transgenic mice for visualization of lymphatics in vivo and in vitro. For instance, GFP, mOrange, tdTomato, and other fluorescent proteins can be expressed under control of a lymphatic-specific marker like Prospero-related homeobox 1 (Prox1), which is a highly conserved transcription factor for determining embryonic organogenesis in vertebrates that is implicated in lymphangiogenesis as well as several human cancers. Importantly, Prox1-null mouse embryos develop without lymphatic vessels. In human adults, Prox1 maintains lymphatic endothelial cells and upregulates proteins associated with lymphangiogenesis (e.g., VEGFR-3) and downregulates angiogenesis-associated gene expression (e.g., STAT6). To visualize lymphatic development in the context of angiogenesis, dual fluorescent-transgenic reporters, like Prox1-GFP/Flt1-DsRed mice, have been bred to characterize lymphatic and blood vessels simultaneously in vivo. In this review, we discuss the trends in lymphatic visualization and the potential usage of transgenic breeds in hemangiogenesis and lymphangiogenesis research to understand spatial and temporal correlations between vascular development and pathological progression.


Assuntos
Genes Reporter , Proteínas Luminescentes/biossíntese , Linfangiogênese , Neovascularização Patológica , Neovascularização Fisiológica , Imagem Óptica/métodos , Animais , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
20.
Med Res Rev ; 38(6): 1769-1798, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29528507

RESUMO

In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.


Assuntos
Inibidores da Angiogênese/farmacologia , Linfangiogênese/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Aprovação de Drogas , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA