Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855550

RESUMO

Current mechanical models of the bladder largely idealize the bladder as spherical with uniform thickness. This present study aims to investigate this idealization using micro-CT to generate 3D reconstructed models of rat bladders at 10-20 micrometer resolution in both voided and filled states. Applied to three rat bladders, this approach identifies shape, volume, and thickness variations under different pressures. These results demonstrate the filling/voiding process is far from the idealized spherical inflation/contraction. However, the geometry idealizations may be reasonable in cases where the filled bladder geometry is of importance, such as in studies of growth and remodeling.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37463319

RESUMO

BACKGROUND: Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs which can include urinary incontinence. Advancing age is a major risk factors for LUTS; however the underlying biochemical mechanisms of age-related LUTS remain unknown. HX (hypoxanthine) is a purine metabolite associated with generation of tissue damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging. METHODS: Adult 3-month-old female Fischer 344 (F344) rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed. RESULTS: HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production and depletion of cellular energy with declines in NAD + levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence). CONCLUSIONS: These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA