Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326097

RESUMO

Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.


Assuntos
Células-Tronco Neurais , Pesquisa com Células-Tronco , Animais , Adulto , Humanos , Nigéria , Neurogênese/genética , Hipocampo/metabolismo
2.
Front Vet Sci ; 9: 842515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433909

RESUMO

Neuropeptides are secretory peptides characterized by small chains of amino acids linked by peptide bonds. They are majorly found in some mammalian neurons and glial cells, where they modulate a variety of physiological homeostasis. In the male genital tract, they are mostly found in the neuronal fibers supplying the vasculature, smooth muscle layer, interstitium, and lamina propria of the tunica mucosa of the various reproductive organs. Functionally, neuropeptides are strongly implicated in vascular temperature regulations, spermatozoa extrusion, epididymal content transportation, and movement of accessory gland secretions. This review provides an overview of neuropeptides with respect to their synthesis, release, and mechanism of actions, with emphasis on the locally acting neuropeptides, such as substance P (SP), neuropeptide Y (NPY), vasoactive intestinal peptides (VIP), calcitonin gene-related peptide (CGRP), galanin (GAL), cholecystokinin (CCK), C-terminal flanking peptide of NPY (CPON), peptide histidine isoleucine (PHI), and met- and leu-enkephalins (M-ENK and L-ENK) along the male genital tract (i.e., the spermatic cord, testis, epididymis, ductus deferens, and accessory sex organs) of 14 species of mammals and their marked influence on reproduction. This review also revealed from documented reports that the vast majority of neuropeptides present in the autonomic nerve supply to the male genital tract probably coexist with other peptides or with various neurotransmitters (tyrosine hydroxylase, dopamine beta hydroxylase, and 5-hydroxytryptamine). In addition, documented evidence of variation in age, season, and intraspecies differences were identified as notable factors of influence in peptidergic nerve fiber distribution.

3.
Metab Brain Dis ; 36(7): 1419-1444, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224065

RESUMO

Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Receptores de Orexina/fisiologia , Orexinas/fisiologia , Envelhecimento/fisiologia , Animais , Humanos , Orexinas/líquido cefalorraquidiano , Transdução de Sinais/fisiologia , Medula Espinal/fisiologia
4.
IBRO Rep ; 9: 164-182, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803016

RESUMO

Vanadium, a transition series metal released during some industrial activities, induces oxidative stress and lipid peroxidation. Ameliorative effect of a pure compound from the methanolic extract of Moringa oleifera leaves, code-named MIMO2, in 14-day old mice administered with vanadium (as sodium metavanadate 3 mg/kg) for 2 weeks was assessed. Results from body weight monitoring, muscular strength, and open field showed slight reduction in body weight and locomotion deficit in vanadium-exposed mice, ameliorated with MIMO2 co-administration. Degeneration of the Purkinje cell layer and neuronal death in the hippocampal CA1 region were observed in vanadium-exposed mice and both appeared significantly reduced with MIMO2 co-administration. Demyelination involving the midline of the corpus callosum, somatosensory and retrosplenial cortices was also reduced with MIMO2. Microglia activation and astrogliosis observed through immunohistochemistry were also alleviated. Immunohistochemistry for myelin, axons and oligodendrocyte lineage cells were also carried out and showed that in vanadium-treated mice brains, oligodendrocyte progenitor cells increased NG2 immunolabelling with hypertrophy and bushy, ramified appearance of their processes. MIMO2 displayed ameliorative and antioxidative effects in vanadium-induced neurotoxicity in experimental murine species. This is likely the first time MIMO2 is being used in vivo in an animal model.

5.
Neuroscience ; 419: 14-22, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491504

RESUMO

Hydrocephalus is especially prevalent in countries with limited resources, where its treatment is still a challenge. However, long-term neuropathological changes in untreated hydrocephalus remain largely unexplored. The present study looks at cortical parenchyma and neuroinflammation in acquired, chronic hydrocephalus. Intracisternal kaolin injections were performed in 3-week-old rats, followed by -1, 4- and 8-week survival; matched control rats received saline injections. Ventriculomegaly has been previously reported to stabilize by the third week in this model. Single and triple immunocytochemical approaches were used to highlight neurones, astrocytes, microglia, and the pro-inflammatory cytokine interleukin (IL)-1ß in the parietal cortex, utilizing cell counts and densitometry. Microglial protein ionized calcium binding adaptor molecule 1 (Iba1) and IL-1ß expressions were monitored with Western blotting in the parietal cortex and hippocampus. In the parietal cortex, which showed progressive disruption of cytoarchitecture, neuronal density was significantly increased at 8weeks post-induction but not at earlier time points, indicating on-going cortical damage in chronic hydrocephalus. Astrocyte and microglia hypertrophy, and Iba1 expression indicated glial cell activation which peaked at 4weeks. IL-1ß expression also peaked at 4weeks and was then down-regulated. Overall the findings indicate that neuroinflammatory features build up in the first month after hydrocephalus induction implicating marked IL-1ß upregulation. The data also show that astrocytes are the main source of IL-1ß in this disorder.


Assuntos
Astrócitos/metabolismo , Hidrocefalia/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Animais , Citocinas/metabolismo , Hipocampo/metabolismo , Ratos , Lobo Temporal/metabolismo
6.
Front Pharmacol ; 9: 1061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319410

RESUMO

In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal's activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to "chronoconnectivity," i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a "chronoconnectivity" in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.

7.
Brain Struct Funct ; 222(8): 3847-3859, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28669028

RESUMO

Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A+ somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn+/VGluT2+) and GABAergic (Syn+/VGAT+) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2+ together with postsynaptic density protein 95+ excitatory contacts, and daytime prevalence of VGAT+ together with gephyrin+ inhibitory contacts, while also showing that they formed synapses on OX-A+ cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.


Assuntos
Plasticidade Neuronal , Neurônios/metabolismo , Orexinas/metabolismo , Sono , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Vigília , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Eletroencefalografia , Masculino , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/metabolismo , Sinaptofisina
8.
J Neuropathol Exp Neurol ; 75(9): 843-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27390101

RESUMO

Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice. Myelin histochemistry and immunohistochemistry for astrocytes, microglia, and nonphosphorylated neurofilaments revealed striking regional heterogeneity. Myelin damage involved the midline corpus callosum and fibers in cortical gray matter, hippocampus, and diencephalon that were associated with axonal damage. Astrocyte and microglial activation was identified in the same regions and in the internal capsule; however, no overt myelin and axon damage was observed in the latter. Double immunofluorescence revealed induction of high tumor necrosis factor (TNF) immunoreactivity in reactive astrocytes. Western blotting analysis showed significant induction of TNF and interleukin-1ß expression. Together these findings show that chronic postnatal vanadium exposure leads to functional deficit and region-dependent myelin damage that does not spare axons. This injury is associated with glial cell activation and proinflammatory cytokine induction, which may reflect both neurotoxic and neuroprotective responses.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Exposição Ambiental/efeitos adversos , Mediadores da Inflamação/metabolismo , Bainha de Mielina/metabolismo , Vanádio/toxicidade , Fatores Etários , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Vanádio/administração & dosagem
9.
Ital J Anat Embryol ; 118(3): 298-302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24640593

RESUMO

This report describes a case of polydactyly in the hind-limb of a West African Dwarf goat kid in South West Africa. Physical examination revealed the presence of four digits in each of the hind limbs. Radiological examination and macerated bones of the animal showed a bifid shape of each metatarsal that was more prominent from the distal half of the diaphysis. This resulted in the presence of four articulating surfaces per limb at the distal extremity. Though this condition is rare in goats, we advise that continuous reporting by researchers can give a better prevalence statistics of these occurrences.


Assuntos
Cabras/anormalidades , Membro Posterior/anormalidades , Polidactilia/veterinária , Animais , Membro Posterior/diagnóstico por imagem , Metatarso/anormalidades , Metatarso/diagnóstico por imagem , Nigéria , Polidactilia/diagnóstico por imagem , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA