Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Stem Cells Int ; 2018: 9108681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140292

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1ß. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.

2.
Front Immunol ; 9: 1449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013550

RESUMO

Genetic modification of mesenchymal stem cells (MSCs) is a promising strategy to improve their therapeutic effects. Granulocyte-colony stimulating factor (G-CSF) is a growth factor widely used in the clinical practice with known regenerative and immunomodulatory actions, including the mobilization of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Here we evaluated the therapeutic potential of MSCs overexpressing G-CSF (MSC_G-CSF) in a model of inflammatory cardiomyopathy due to chronic Chagas disease. C57BL/6 mice were treated with wild-type MSCs, MSC_G-CSF, or vehicle (saline) 6 months after infection with Trypanosoma cruzi. Transplantation of MSC_G-CSF caused an increase in the number of circulating leukocytes compared to wild-type MSCs. Moreover, G-CSF overexpression caused an increase in migration capacity of MSCs to the hearts of infected mice. Transplantation of either MSCs or MSC_G-CSF improved exercise capacity, when compared to saline-treated chagasic mice. MSC_G-CSF mice, however, were more potent than MSCs in reducing the number of infiltrating leukocytes and fibrosis in the heart. Similarly, MSC_G-CSF-treated mice presented significantly lower levels of inflammatory mediators, such as IFNγ, TNFα, and Tbet, with increased IL-10 production. A marked increase in the percentage of Tregs and MDSCs in the hearts of infected mice was seen after administration of MSC_G-CSF, but not MSCs. Moreover, Tregs were positive for IL-10 in the hearts of T. cruzi-infected mice. In vitro analysis showed that recombinant hG-CSF and conditioned medium of MSC_G-CSF, but not wild-type MSCs, induce chemoattraction of MDSCs in a transwell assay. Finally, MDSCs purified from hearts of MSC_G-CSF transplanted mice inhibited the proliferation of activated splenocytes in a co-culture assay. Our results demonstrate that G-CSF overexpression by MSCs potentiates their immunomodulatory effects in our model of Chagas disease and suggest that mobilization of suppressor cell populations such as Tregs and MDSCs as a promising strategy for the treatment of chronic Chagas disease. Finally, our results reinforce the therapeutic potential of genetic modification of MSCs, aiming at increasing their paracrine actions.

3.
Sci Rep ; 6: 39775, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008958

RESUMO

Zika virus (ZIKV) infection has been associated with severe complications both in the developing and adult nervous system. To investigate the deleterious effects of ZIKV infection, we used human neural progenitor cells (NPC), derived from induced pluripotent stem cells (iPSC). We found that NPC are highly susceptible to ZIKV and the infection results in cell death. ZIKV infection led to a marked reduction in cell proliferation, ultrastructural alterations and induction of autophagy. Induction of apoptosis of Sox2+ cells was demonstrated by activation of caspases 3/7, 8 and 9, and by ultrastructural and flow cytometry analyses. ZIKV-induced death of Sox2+ cells was prevented by incubation with the pan-caspase inhibitor, Z-VAD-FMK. By confocal microscopy analysis we found an increased number of cells with supernumerary centrosomes. Live imaging showed a significant increase in mitosis abnormalities, including multipolar spindle, chromosome laggards, micronuclei and death of progeny after cell division. FISH analysis for chromosomes 12 and 17 showed increased frequency of aneuploidy, such as monosomy, trisomy and polyploidy. Our study reinforces the link between ZIKV and abnormalities in the developing human brain, including microcephaly.


Assuntos
Apoptose , Mitose , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Infecção por Zika virus/metabolismo , Zika virus/metabolismo , Células Cultivadas , Humanos , Células-Tronco Neurais/patologia , Infecção por Zika virus/patologia
4.
BMC Cardiovasc Disord ; 15: 162, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631050

RESUMO

BACKGROUND/OBJECTIVES: High fat diet (HFD) is a major contributor to the development of obesity and cardiovascular diseases due to the induction of cardiac structural and hemodynamic abnormalities. We used a model of diabetic cardiomyopathy in C57Bl/6 mice fed with a HFD to investigate the effects of granulocyte-colony stimulating factor (G-CSF), a cytokine known for its beneficial effects in the heart, on cardiac anatomical and functional abnormalities associated with obesity and type 2 diabetes. METHODS: Groups of C57Bl/6 mice were fed with standard diet (n = 8) or HFD (n = 16). After 36 weeks, HFD animals were divided into a group treated with G-CSF + standard diet (n = 8) and a vehicle control group + standard diet (n = 8). Cardiac structure and function were assessed by electrocardiography, echocardiography and treadmill tests, in addition to the evaluation of body weight, fasting glicemia, insulin and glucose tolerance at different time points. Histological analyses were performed in the heart tissue. RESULTS: HFD consumption induced metabolic alterations characteristic of type 2 diabetes and obesity, as well as cardiac fibrosis and reduced exercise capacity. Upon returning to a standard diet, obese mice body weight returned to non-obese levels. G-CSF administration accelerated the reduction in of body weight in obese mice. Additionally, G-CSF treatment reduced insulin levels, diminished heart fibrosis, increased exercise capacity and reversed cardiac alterations, including bradycardia, elevated QRS amplitude, augmented P amplitude, increased septal wall thickness, left ventricular posterior thickening and cardiac output reduction. CONCLUSION: Our results indicate that G-CSF administration caused beneficial effects on obesity-associated cardiac impairment.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Obesidade/complicações , Adiponectina/sangue , Animais , Glicemia/metabolismo , Colesterol/sangue , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Hemodinâmica , Insulina/sangue , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Obesidade/patologia , Obesidade/fisiopatologia
5.
Int J Exp Pathol ; 95(5): 321-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24976301

RESUMO

Infection by Trypanosoma cruzi, the aetiological agent of Chagas disease, causes an intense inflammatory reaction in several tissues, including the myocardium. We have previously shown that transplantation of bone marrow cells (BMC) ameliorates the myocarditis in a mouse model of chronic Chagas disease. We investigated the participation of BMC in lesion repair in the heart and skeletal muscle, caused by T. cruzi infection in mice. Infection with a myotropic T. cruzi strain induced an increase in the percentage of stem cells and monocytes in the peripheral blood, as well as in gene expression of chemokines SDF-1, MCP1, 2, and 3 in the heart and skeletal muscle. To investigate the fate of BMC within the damaged tissue, chimeric mice were generated by syngeneic transplantation of green fluorescent protein (GFP(+) ) BMC into lethally irradiated mice and infected with Trypanosoma cruzi. Migration of GFP(+) BMC to the heart and skeletal muscle was observed during and after the acute phase of infection. GFP(+) cardiomyocytes and endothelial cells were present in heart sections of chimeric chagasic mice. GFP(+) myofibres were observed in the skeletal muscle of chimeric mice at different time points following infection. In conclusion, BMC migrate and contribute to the formation of new resident cells in the heart and skeletal muscle, which can be detected both during the acute and the chronic phase of infection. These findings reinforce the role of BMC in tissue regeneration.


Assuntos
Células da Medula Óssea/citologia , Movimento Celular , Doença de Chagas/parasitologia , Coração/parasitologia , Músculo Esquelético/metabolismo , Miocárdio/citologia , Trypanosoma cruzi , Animais , Cardiomiopatia Chagásica/metabolismo , Doença de Chagas/patologia , Quimiocinas/metabolismo , Doença Crônica , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Miocárdio/metabolismo , Trypanosoma cruzi/fisiologia
6.
Rev Soc Bras Med Trop ; 37(3): 218-21, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15330060

RESUMO

Present report demonstrates that repeated radiation of Schistosoma mansoni-infected Biomphalaria glabrata, totaling 15,000 rads, caused a sudden, albeit transient, suppression of cercarial shedding. Initially, sporocysts practically disappeared from the snail tissues. The more resistant developing cercariae presented nuclear clumping and vacuolation, before undergoing lysis. No host tissue reaction was evident at any time. Thirty-four days after the last irradiation, the snails resumed cercarial elimination. By that time numerous sporocysts and developing cercariae were detected, disseminated throughout snail tissues in a pattern similar to that of a highly malignant neoplasm, with no signs of host cellular reactions, which on the other hand were present in non-irradiated infected controls. The region of the ovo-testis was apparently destroyed after radiation, but returned to its normal appearance around 40 days after the last radiation. Ionizing radiation affected both host and parasite in S. mansoni-infected Biomphalaria glabrata, but the resulting impressive changes were soon reversed.


Assuntos
Biomphalaria/parasitologia , Schistosoma mansoni/efeitos da radiação , Animais , Biomphalaria/imunologia , Biomphalaria/efeitos da radiação , Fatores de Tempo
7.
Rev. Soc. Bras. Med. Trop ; 37(3): 218-221, maio-jun. 2004. ilus
Artigo em Inglês | LILACS | ID: lil-360407

RESUMO

O presente trabalho demonstra que a irradiação repetida, num total de 15.000 rads, resulta numa rápida supressão da eliminação das cercarias em caramujos infectados pelo Schistosoma mansoni. Inicialmente os esporocistos desaparecem dos tecidos. As formas evolutivas das cercarias são mais resistentes e apresentam vacuolização citoplasmática e condensação nuclear antes de desaparecerem. Não foram observadas reações nos tecidos do hospedeiro. Trinta e quatro dias após a última irradiação, os caramujos voltam a eliminar cercárias. Numerosos esporocistos e cercárias em desenvolvimento aparecem infiltrando difusamente os tecidos à maneira de uma neoplasia maligna, sem sinais de oposição da parte do hospedeiro, a qual era visível nos controles infectados e não irradiados. A região do ovo-testis apareceu destruída após a radiação, mas retornou à sua aparência normal em torno de 40 dias mais tarde. A radiação ionizante afeta tanto o hospedeiro como as formas em desenvolvimento do parasito, mas estas alterações impressionantes são logo reversíveis.


Assuntos
Animais , Biomphalaria , Schistosoma mansoni , Biomphalaria , Radiação Ionizante , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA