Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 214: 10-21, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700843

RESUMO

Antimicrobial peptides, also known as AMPs, are cationic and amphipathic molecules found in all living organisms, composing part of the defense mechanisms against various pathogens, including fungi, viruses, bacteria, and nematodes. AMPs derived from plants are the focus of this review because they have gained attention as alternative molecules to overcome pathogen resistance as well as new drugs to combat cancer. Plant AMPs are generally classified based on their sequences and structures, as thionins, defensins, hevein-like peptides, knottins, stable-like peptides, lipid transfer proteins, snakins, and cyclotides. Although there are studies reporting the toxicity of plant AMPs to nontarget cells or limitations of oral administration, synthetic AMPs with reduced toxicity or allergenicity, or greater resistance to peptidases can be designed by using different bioinformatics tools. Thus, this review provides information about the classification of plant AMPs, their characteristics, mechanisms of action, hemolytic and cytotoxic potential, possible applications in the medical field, and finally, the use of bioinformatics to help design synthetic AMPs with improved features.


Assuntos
Peptídeos Antimicrobianos , Plantas , Biologia Computacional , Fungos , Plantas/química
2.
Phytochemistry ; 180: 112527, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33007618

RESUMO

A partial cDNA sequence from Anacardium occidentale CCP 76 was obtained, encoding a GH19 chitinase (AoChi) belonging to class VI. AoChi exhibits distinct structural features in relation to previously characterized plant GH19 chitinases from classes I, II, IV and VII. For example, a conserved Glu residue at the catalytic center of typical GH19 chitinases, which acts as the proton donor during catalysis, is replaced by a Lys residue in AoChi. To verify if AoChi is a genuine chitinase or is a chitinase-like protein that has lost its ability to degrade chitin and inhibit the growth of fungal pathogens, the recombinant protein was expressed in Pichia pastoris, purified and biochemically characterized. Purified AoChi (45 kDa apparent molecular mass) was able to degrade colloidal chitin, with optimum activity at pH 6.0 and at temperatures from 30 °C to 50 °C. AoChi activity was completely lost when the protein was heated at 70 °C for 1 h or incubated at pH values of 2.0 or 10.0. Several cation ions (Al3+, Cd2+, Ca2+, Pb2+, Cu2+, Fe3+, Mn2+, Rb+, Zn2+ and Hg2+), chelating (EDTA) and reducing agents (DTT, ß-mercaptoethanol) and the denaturant SDS, drastically reduced AoChi enzymatic activity. AoChi chitinase activity fitted the classical Michaelis-Menten kinetics, although turnover number and catalytic efficiency were much lower in comparison to typical GH19 plant chitinases. Moreover, AoChi inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, causing several alterations in hyphae morphology. Molecular docking of a chito-oligosaccharide in the substrate-binding cleft of AoChi revealed that the Lys residue (theoretical pKa = 6.01) that replaces the catalytic Glu could act as the proton donor during catalysis.


Assuntos
Anacardium , Quitinases , Antifúngicos/farmacologia , Quitina , Quitinases/genética , Simulação de Acoplamento Molecular
3.
Int J Biol Macromol ; 165(Pt A): 1482-1495, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33017605

RESUMO

A chitosanase (CvCsn46) from Chromobacterium violaceum ATCC 12472 was produced in Escherichia coli, purified, and partially characterized. When subjected to denaturing polyacrylamide gel electrophoresis, the enzyme migrated as two protein bands (38 and 36 kDa apparent molecular masses), which were both identified as CvCsn46 by mass spectrometry. The enzyme hydrolyzed colloidal chitosan, with optimum catalytic activity at 50 °C, and two optimum pH values (at pH 6.0 and pH 11.0). The chitosanolytic activity of CvCsn46 was enhanced by some ions (Ca2+, Co2+, Cu2+, Sr2+, Mn2+) and DTT, whereas Fe2+, SDS and ß-mercaptoethanol completely inhibited its activity. CvCsn46 showed a non-Michaelis-Menten kinetics, characterized by a sigmoidal velocity curve (R2 = 0.9927) and a Hill coefficient of 3.95. ESI-MS analysis revealed that the hydrolytic action of CvCsn46 on colloidal chitosan generated a mixture of low molecular mass chitooligosaccharides, containing from 2 to 7 hexose residues, as well as D-glucosamine. The chitosan oligomers generated by CvCsn46 inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, significantly reducing mycelium extension and inducing hyphal morphological alterations, as observed by scanning electron microscopy. CvCsn46 was characterized as a versatile biocatalyst that produces well-defined chitooligosaccharides, which have potential to control fungi that cause important crop diseases.


Assuntos
Antifúngicos/química , Quitina/análogos & derivados , Chromobacterium/genética , Glicosídeo Hidrolases/genética , Sequência de Aminoácidos/genética , Quitina/biossíntese , Quitina/química , Quitina/genética , Quitosana/química , Chromobacterium/enzimologia , Escherichia coli/genética , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA