Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165453

RESUMO

This study explores the computational discovery of non-peptide agonists targeting the Glucagon-Like Peptide-1 Receptor (GLP-1R) to enhance the safety of major coronary outcomes in individuals affected by Type 2 Diabetes. The objective is to identify novel compounds that can activate the GLP-1R pathway without the limitations associated with peptide agonists. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular disease (CVD) and mortality, which is attributed to the accumulation of fat in organs, including the heart. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are frequently used to manage T2DM and could potentially offer cardiovascular benefits. Therefore, this study examines non-peptide agonists of GLP-1R to improve coronary safety in type 2 diabetes patients. After rigorous assessments, two standout candidates were identified, with natural compound 12 emerging as the most promising. This study represents a notable advancement in enhancing the management of coronary outcomes among individuals with type 2 diabetes. The computational methodology employed successfully pinpointed potential GLP-1R natural agonists, providing optimism for the development of safer and more effective therapeutic interventions. Although computational methodologies have provided crucial insights, realizing the full potential of these compounds requires extensive experimental investigations, crucial in advancing therapeutic strategies for this critical patient population.Communicated by Ramaswamy H. Sarma.

2.
Sustain Chem Pharm ; 34: 101136, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37333050

RESUMO

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is responsible for ongoing epidemics in humans and some other mammals and has been declared a public health emergency of international concern. In this project, several small non-peptide molecules were synthesized to inhibit the major proteinase (Mpro) of SARS-CoV-2 using rational strategies of drug design and medicinal chemistry. Mpro is a key enzyme of coronaviruses and plays an essential role in mediating viral replication and transcription in human lung epithelial and stem cells, making it an attractive drug target for SARS-CoV. The antiviral potential of imidazoline derivatives as inhibitors of (SARS-CoV-2) Mpro was evaluated using in-silico techniques such as molecular docking simulation, molecular dynamics (MD), and ADMET prediction. The docking scores of these imidazoline derivatives were compared to that of the N3 crystal inhibitor and showed that most of these compounds, particularly compound E07, interacted satisfactorily in the active site of the coronavirus and strongly interacted with the residues (Met 165, Gln 166, Met 165, His 41, and Gln 189). Furthermore, the results were confirmed by MD simulations after exposure to long-term MD simulations and ADMET predictions.

3.
Bioinorg Chem Appl ; 2023: 2881582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125145

RESUMO

In this paper, the novel Schiff base ligand containing quinoline moiety and its novel copper chelate complexes were successfully prepared. The catalytic activity of the final complex in the organic reaction such as synthesis of chiral benzimidazoles and anti-HIV-1 activity of Schiff base ligand and the products of this reaction were investigated. In addition, green chemistry reactions using microwaves, powerful catalyst synthesis, green recovery and reusability, and separation of products with economic, safe, and clean methods (green chemistry) are among the advantages of this protocol. The potency of these compounds as anti-HIV-1 agents was investigated using molecular docking into integrase (IN) enzyme with code 1QS4 and the GROMACS software for molecular dynamics simulation. The final steps were evaluated in case of RMSD, RMSF, and Rg. The results revealed that the compound VII exhibit a good binding affinity to integrase (Δg = -10.99 kcal/mol) during 100 ns simulation time, and the analysis of RMSD suggested that compound VII was stable in the binding site of integrase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA