Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463963

RESUMO

Low-abundance members of microbial communities are difficult to study in their native habitats. This includes Escherichia coli, a minor, but common inhabitant of the gastrointestinal tract and opportunistic pathogen, including of the urinary tract, where it is the primary pathogen. While multi-omic analyses have detailed critical interactions between uropathogenic Escherichia coli (UPEC) and the bladder that mediate UTI outcome, comparatively little is known about UPEC in its pre-infection reservoir, partly due to its low abundance there (<1% relative abundance). To accurately and sensitively explore the genomes and transcriptomes of diverse E. coli in gastrointestinal communities, we developed E. coli PanSelect which uses a set of probes designed to specifically recognize and capture E. coli's broad pangenome from sequencing libraries. We demonstrated the ability of E. coli PanSelect to enrich, by orders of magnitude, sequencing data from diverse E. coli using a mock community and a set of human stool samples collected as part of a cohort study investigating drivers of recurrent urinary tract infections (rUTI). Comparisons of genomes and transcriptomes between E. coli residing in the gastrointestinal tracts of women with and without a history of rUTI suggest that rUTI gut E. coli are responding to increased levels of oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of native in vivo biology of E. coli in other environments where it is at low relative abundance, and the framework described here has broad applicability to other highly diverse, low abundance organisms.

2.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747646

RESUMO

The ability to detect and quantify microbiota over time has a plethora of clinical, basic science, and public health applications. One of the primary means of tracking microbiota is through sequencing technologies. When the microorganism of interest is well characterized or known a priori, targeted sequencing is often used. In many applications, however, untargeted bulk (shotgun) sequencing is more appropriate; for instance, the tracking of infection transmission events and nucleotide variants across multiple genomic loci, or studying the role of multiple genes in a particular phenotype. Given these applications, and the observation that pathogens (e.g. Clostridioides difficile, Escherichia coli, Salmonella enterica) and other taxa of interest can reside at low relative abundance in the gastrointestinal tract, there is a critical need for algorithms that accurately track low-abundance taxa with strain level resolution. Here we present a sequence quality- and time-aware model, ChronoStrain, that introduces uncertainty quantification to gauge low-abundance species and significantly outperforms the current state-of-the-art on both real and synthetic data. ChronoStrain leverages sequences' quality scores and the samples' temporal information to produce a probability distribution over abundance trajectories for each strain tracked in the model. We demonstrate Chronostrain's improved performance in capturing post-antibiotic E. coli strain blooms among women with recurrent urinary tract infections (UTIs) from the UTI Microbiome (UMB) Project. Other strain tracking models on the same data either show inconsistent temporal colonization or can only track consistently using very coarse groupings. In contrast, our probabilistic outputs can reveal the relationship between low-confidence strains present in the sample that cannot be reliably assigned a single reference label (either due to poor coverage or novelty) while simultaneously calling high-confidence strains that can be unambiguously assigned a label. We also include and analyze newly sequenced cultured samples from the UMB Project.

3.
Nat Microbiol ; 7(5): 630-639, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505248

RESUMO

Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with history of infection being a significant risk factor. While the gut is a known reservoir for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We conducted a year-long study of women with (n = 15) and without (n = 16) history of rUTI, from whom we collected urine, blood and monthly faecal samples for metagenomic and transcriptomic interrogation. During the study 24 UTIs were reported, with additional samples collected during and after infection. The gut microbiome of individuals with a history of rUTI was significantly depleted in microbial richness and butyrate-producing bacteria compared with controls, reminiscent of other inflammatory conditions. However, Escherichia coli gut and bladder populations were comparable between cohorts in both relative abundance and phylogroup. Transcriptional analysis of peripheral blood mononuclear cells revealed expression profiles indicative of differential systemic immunity between cohorts. Altogether, these results suggest that rUTI susceptibility is in part mediated through the gut-bladder axis, comprising gut dysbiosis and differential immune response to bacterial bladder colonization, manifesting in symptoms.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Infecções Urinárias , Disbiose , Escherichia coli , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Infecções Urinárias/microbiologia
4.
mSphere ; 3(6)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404931

RESUMO

Outer membrane vesicles (OMVs) are spherical structures derived from the outer membranes (OMs) of Gram-negative bacteria. Bacteroides spp. are prominent components of the human gut microbiota, and OMVs produced by these species are proposed to play key roles in gut homeostasis. OMV biogenesis in Bacteroides is a poorly understood process. Here, we revisited the protein composition of Bacteroides thetaiotaomicron OMVs by mass spectrometry. We confirmed that OMVs produced by this organism contain large quantities of glycosidases and proteases, with most of them being lipoproteins. We found that most of these OMV-enriched lipoproteins are encoded by polysaccharide utilization loci (PULs), such as the sus operon. We examined the subcellular locations of the components of the Sus system and found a split localization; the alpha-amylase SusG is highly enriched in OMVs, while the oligosaccharide importer SusC remains mostly in the OM. We found that all OMV-enriched lipoproteins possess a lipoprotein export sequence (LES), and we show that this signal mediates translocation of SusG from the periplasmic face of the OM toward the extracellular milieu. Mutations in the LES motif caused defects in surface exposure and recruitment of SusG into OMVs. These experiments link, for the first time, surface exposure to recruitment of proteins into OMVs. We also show that surface-exposed SusG in OMVs is active and rescues the growth of bacterial cells incapable of growing on starch as the only carbon source. Our results support the role of OMVs as "public goods" that can be utilized by other organisms with different metabolic capabilities.IMPORTANCE Species from the Bacteroides genus are predominant members of the human gut microbiota. OMVs in Bacteroides have been shown to be important for the homeostasis of complex host-commensal relationships, mainly involving immune tolerance and protection from disease. OMVs carry many enzymatic activities involved in the cleavage of complex polysaccharides and have been proposed as public goods that can provide growth to other bacterial species by release of polysaccharide breakdown products into the gut lumen. This work shows that the presence of a negatively charged rich amino acid motif (LES) is required for efficient packing of the surface-exposed alpha-amylase SusG into OMVs. Our findings strongly suggest that surface exposure is coupled to packing of Bacteroides lipoproteins into OMVs. This is the first step in the generation of tailor-made probiotic interventions that can exploit LES-related sequences to generate Bacteroides strains displaying proteins of interest in OMVs.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Vesículas Extracelulares/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Bacteroides thetaiotaomicron/química , Vesículas Extracelulares/química , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/metabolismo , Lipoproteínas/análise , Espectrometria de Massas , Proteínas de Membrana/análise , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/metabolismo , Transporte Proteico
5.
Immunol Res ; 61(3): 187-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25281273

RESUMO

Multiple sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system, in which many factors can act together to influence disease susceptibility and progression. SIRT1 is a member of the histone deacetylase class III family of proteins and is an NAD(+)-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and plays an important role as a key regulator of a wide variety of cellular and physiological processes including DNA damage, cell survival, metabolism, aging, and neurodegeneration. It has gained a lot of attention recently because many studies in animal models of demyelinating and neurodegenerative diseases have shown that SIRT1 induction can ameliorate the course of the disease. SIRT1 expression was found to be decreased in the peripheral blood mononuclear cells of MS patients during relapses. SIRT1 represents a possible biomarker of relapses and a potential new target for therapeutic intervention in MS. Modulation of SIRT1 may be a valuable strategy for treating or preventing MS and neurodegenerative central nervous system disorders.


Assuntos
Biomarcadores/metabolismo , Doenças Desmielinizantes/metabolismo , Esclerose Múltipla/metabolismo , Doenças Neurodegenerativas/metabolismo , Sirtuína 1/metabolismo , Animais , Autoimunidade , Montagem e Desmontagem da Cromatina , Doenças Desmielinizantes/imunologia , Histonas/metabolismo , Humanos , Terapia de Alvo Molecular , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/imunologia , Processamento de Proteína Pós-Traducional
6.
Exp Mol Pathol ; 96(2): 139-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24397908

RESUMO

SIRT1 is a member of the histone deacetylase (HDAC) class III family of proteins and is an NAD-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and can modulate cell survival by regulating the transcriptional activities. We investigated the expression of SIRT1 in multiple sclerosis (MS) brains and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that SIRT1 was expressed by a significant number of cells in both acute and chronic active lesions. We also found that CD4(+), CD68(+), oligodendrocytes (OLG), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with SIRT1. Our results show a statistically significant decrease in SIRT1 mRNA and protein expression in PBMCs during relapses when compared to the levels in controls and stable MS patients. On the other hand, HDAC3 expression was not significantly changed during relapses in MS patients. SIRT1 expression correlated with that of histone H3 lysine 9 acetylation (H3K9ac) and methylation (H3K9me2). SIRT1 mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of SIRT1 expression. Furthermore, we investigated the role of SIRT1 in the expression of FasL and found a significant increase in FasL expression and apoptosis after inhibition of SIRT1 expression. Our data suggest that SIRT1 may represent a biomarker of relapses and a potential new target for therapeutic intervention in MS.


Assuntos
Encéfalo/patologia , Histonas/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla/genética , Sirtuína 1/sangue , Acetilação , Adolescente , Adulto , Idoso , Apoptose/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/biossíntese , Sirtuína 1/biossíntese , Sirtuína 1/genética
7.
Exp Mol Pathol ; 94(1): 17-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000427

RESUMO

Response gene to complement (RGC)-32 is a novel molecule that plays an important role in cell proliferation. We investigated the expression of RGC-32 in multiple sclerosis (MS) brain and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that CD3(+), CD68(+), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with RGC-32. Our results show a statistically significant decrease in RGC-32 mRNA expression in PBMCs during relapses when compared to the levels in stable MS patients. This decrease might be useful in predicting disease activity in patients with relapsing-remitting MS. RGC-32 expression was also correlated with that of FasL mRNA during relapses. FasL mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of FasL expression. In addition, the expression of Akt1, cyclin D1, and IL-21 mRNA was significantly increased during MS relapses when compared to levels in healthy controls. Furthermore, we investigated the role of RGC-32 in TGF-ß-induced extracellular matrix expression in astrocytes. Blockage of RGC-32 using small interfering RNA significantly inhibits TGF-ß induction of procollagen I, fibronectin and of the reactive astrocyte marker α-smooth muscle actin (α-SMA). Our data suggest that RGC-32 plays a dual role in MS, both as a regulator of T-cells mediated apoptosis and as a promoter of TGF-ß-mediated profibrotic effects in astrocytes.


Assuntos
Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Actinas/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Apoptose , Astrócitos/metabolismo , Complexo CD3/análise , Proteínas de Ciclo Celular/genética , Proliferação de Células , Colágeno Tipo I/metabolismo , Proteínas do Sistema Complemento/metabolismo , Ciclina D1/biossíntese , Ciclina D1/genética , Matriz Extracelular/metabolismo , Proteína Ligante Fas/genética , Feminino , Fibronectinas/metabolismo , Proteína Glial Fibrilar Ácida , Humanos , Interleucinas/biossíntese , Interleucinas/genética , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
8.
Curr Opin Microbiol ; 15(3): 232-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22245564

RESUMO

Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests.


Assuntos
Agentes de Controle Biológico , Fungos , Inseticidas , Controle Biológico de Vetores/métodos , Animais , Engenharia Genética , Insetos Vetores , Insetos
9.
Exp Mol Pathol ; 91(1): 335-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21540025

RESUMO

Voltage-gated potassium (K(v)) channels play an important role in the regulation of growth factor-induced cell proliferation. We have previously shown that cell cycle activation is induced in oligodendrocytes (OLGs) by complement C5b-9, but the role of K(v) channels in these cells had not been investigated. Differentiated OLGs were found to express K(v)1.4 channels, but little K(v)1.3. Exposure of OLGs to C5b-9 modulated K(v)1.3 functional channels and increased protein expression, whereas C5b6 had no effect. Pretreatment with the recombinant scorpion toxin rOsK-1, a highly selective K(v)1.3 inhibitor, blocked the expression of K(v)1.3 induced by C5b-9. rOsK-1 inhibited Akt phosphorylation and activation by C5b-9 but had no effect on ERK1 activation. These data strongly suggest a role for K(v)1.3 in controlling the Akt activation induced by C5b-9. Since Akt plays a major role in C5b-9-induced cell cycle activation, we also investigated the effect of inhibiting K(v)1.3 channels on DNA synthesis. rOsK-1 significantly inhibited the DNA synthesis induced by C5b-9 in OLG, indicating that K(v)1.3 plays an important role in the C5b-9-induced cell cycle. In addition, C5b-9-mediated myelin basic protein and proteolipid protein mRNA decay was completely abrogated by inhibition of K(v)1.3 expression. In the brains of multiple sclerosis patients, C5b-9 co-localized with NG2(+) OLG progenitor cells that expressed K(v)1.3 channels. Taken together, these data suggest that K(v)1.3 channels play an important role in controlling C5b-9-induced cell cycle activation and OLG dedifferentiation, both in vitro and in vivo.


Assuntos
Ciclo Celular/fisiologia , Desdiferenciação Celular/fisiologia , Complexo de Ataque à Membrana do Sistema Complemento/fisiologia , Canal de Potássio Kv1.3/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/citologia , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Venenos de Escorpião/farmacologia
10.
Exp Mol Pathol ; 88(1): 67-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19883641

RESUMO

First described as a cell cycle activator, RGC-32 is both an activator and a substrate for CDC2. Deregulation of RGC-32 expression has been detected in a wide variety of human cancers. We have now shown that RGC-32 is expressed in precancerous states, and its expression is significantly higher in adenomas than in normal colon tissue. The expression of RGC-32 was higher in advanced stages of colon cancer than in precancerous states or the initial stages of colon cancer. In order to identify the genes that are regulated by RGC-32, we used gene array analysis to investigate the effect of RGC-32 knockdown on gene expression in the SW480 colon cancer cell line. Of the 230 genes that were differentially regulated after RGC-32 knockdown, a group of genes involved in chromatin assembly were the most significantly regulated in these cells: RGC-32 knockdown induced an increase in acetylation of histones H2B lysine 5 (H2BK5), H2BK15, H3K9, H3K18, and H4K8. RGC-32 silencing was also associated with decreased expression of SIRT1 and decreased trimethylation of histone H3K27 (H3K27me3). In addition, RGC-32 knockdown caused a significantly higher percentage of SW480 cells to enter S phase and subsequently G2/M. These data suggest that RGC-32 may contribute to the development of colon cancer by regulating chromatin assembly.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Lesões Pré-Cancerosas/genética , Acetilação , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Técnica Indireta de Fluorescência para Anticorpo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Lesões Pré-Cancerosas/metabolismo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA