Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Stress Chaperones ; 28(5): 511-528, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36449150

RESUMO

Conditions that cause proteotoxicity like high temperature trigger the activation of unfolded protein response (UPR). The cytosolic (CPR) and endoplasmic reticulum (ER) UPR rely on heat stress transcription factor (HSF) and two members of the basic leucine zipper (bZIP) gene family, respectively. In tomato, HsfA1a is the master regulator of CPR. Here, we identified the core players of tomato ER-UPR including the two central transcriptional regulators, namely bZIP28 and bZIP60. Interestingly, the induction of ER-UPR genes and the activation of bZIP60 are altered in transgenic plants where HsfA1a is either overexpressed (A1aOE) or suppressed (A1CS), indicating an interplay between CPR and ER-UPR systems. Several ER-UPR genes are differentially expressed in the HsfA1a transgenic lines either exposed to heat stress or to the ER stress elicitor tunicamycin (TUN). The ectopic expression of HsfA1a is associated with higher tolerance against TUN. On the example of the ER-resident Hsp70 chaperone BIP3, we show that the presence of cis-elements required for HSF and bZIP regulation serves as a putative platform for the co-regulation of these genes by both CPR and ER-UPR mechanisms, in the case of BIP3 in a stimulatory manner under high temperatures. In addition, we show that the accumulation of HsfA1a results in higher levels of three ATG genes and a more sensitized induction of autophagy in response to ER stress which also supports the increased tolerance to ER stress of the A1aOE line. These findings provide a basis for the coordination of protein homeostasis in different cellular compartments under stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA