Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Pharm Technol Res ; 13(3): 207-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935696

RESUMO

The present study examines the potential activity prediction based on free binding energy (ΔG) and interaction confirmation of phytocompounds from Artocarpus champeden (Lour.) Stokes with macromolecule protein receptor of dipeptidyl peptidase IV (DPP-IV) using in silico molecular docking studies and physicochemical and pharmacokinetic properties (ADME-Tox) prediction approaches. The active subsites of the DPP-IV receptor macromolecule protein Protein Data Bank (ID: 1 × 70) were docked using Autodock v4.2.6 (100 docking runs). A grid box of 52 × 28 × 26 Å points spaced by 0.37 Å was centered on the active site of x = 40.926 Å; y = 50.522 Å; z = 35.031 Å. For ADME-Tox prediction, Swiss ADME online-based application programs were used. The results show that 12 pythocompounds from A. champeden have the potential as DPP-IV inhibitors based on ΔG value and interaction conformation. There are five pythocompounds with lower ΔG values and inhibition constants than the native ligand and seven pythocompounds with ΔG values and inhibition constants close to the native ligand. The 12 compounds form an interaction conformation at the active subsites of the DPP-IV receptor. At the same time, the results of the ADME-Tox prediction analysis showed that the 12 compounds had different physicochemical and pharmacokinetic properties.

2.
Heliyon ; 8(3): e09045, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35287328

RESUMO

The synthesized 3,3-di(indolyl)indolin-2-ones 1a-p showed desired higher α-glucosidase inhibitory activities and lower α-amylase inhibitory activities than standard drug acarbose. Particularly, compound 1i showed favorable higher α-glucosidase % inhibition of 67 ± 13 and lower α-amylase % inhibition of 51 ± 4 in comparison to acarbose with % inhibition activities of 19 ± 5 and 90 ± 2, respectively. Docking studies of selected 3,3-di(indolyl)indolin-2-ones revealed key interactions with the active sites of both α-glucosidase and α-amylase, further supporting the observed % inhibitory activities. Furthermore, the binding energies are consistent with the % inhibition values. The results suggest that 3,3-di(indolyl)indolin-2-ones may be developed as suitable Alpha Glucosidase Inhibitors (AGIs) and the lower α-amylase activities should be advantageous to reduce the side effects exhibited by commercial AGIs.

3.
Heliyon ; 7(8): e07702, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34401583

RESUMO

Natural deep eutectic solvent (NADES) is an alternative approach in natural product extraction with various advantages, including low toxicity, biodegradable, and suitable phytochemical compounds in a wide range of polarity. Chlorogenic acid (CGA) and caffeine, a well-known compound in the coffee bean, have various potential health benefits. This study aims to optimize the betaine-sorbitol NADES-based ultrasound-assisted extraction (UAE) method of CGA and caffeine from Robusta green coffee beans and determine the inhibitory activity of robusta green coffee beans extract of the betaine-sorbitol NADES-UAE from the optimum condition on pancreatic lipase in vitro and in silico. The betaine-sorbitol NADES-UAE factors as experimental design variable parameters include betaine-sorbitol ratio (0.5:1.2, 1.25:1.2, and 2:1.2 mol), extraction time (10, 35, and 60 min), and solid-liquid ratio (1:10, 1:20, and 1:30 g/mL). Response surface methodology and Box-Behnken Design were used to optimize the extraction process. The response surface was calculated by using CGA and caffeine content as response values. CGA and caffeine content was determined by High-Performance Liquid Chromatography. Whereas in vitro lipase inhibitory activity assay examined by spectrophotometric measurement and in silico molecular docking analysis on PDB ID: 1LPB. According to the results, the optimum conditions of the betaine-sorbitol NADES-UAE have obtained the betaine-sorbitol ratio of 1.25: 1.2 mol, solid-liquid ratio of 1:30 mg/mL, and 60 min extraction time. Furthermore, obtained Robusta green coffee extract from the optimum condition of the betaine-sorbitol NADES-UAE showed high potential to inhibit lipase activity with IC50 of 18.02 µg/ml, comparable with IC50 of standard CGA (11.90 µg/ml) and caffeine (15.59 µg/ml), where potential interaction of both standards was confirmed using molecular docking analysis. Our finding demonstrated the optimum condition of the betaine-sorbitol NADES-UAE method for CGA and caffeine extraction and the potential pancreatic lipase inhibition activity from the Robusta green coffee bean.

4.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513944

RESUMO

Chondroitin sulfate A was covalently immobilized onto a monolithic silica epoxy column involving a Schiff base formation in the presence of ethylenediamine as a spacer and evaluated in terms of its selectivity in enantioseparation. The obtained column was utilized as a chiral stationary phase in enantioseparation of amlodipine and verapamil using a mobile phase consisting of 50 mM phosphate buffer pH 3.5 and UV detection. Sample dilution by organic solvents (preferably 25% v/v acetonitrile-aqueous solution) was applied to achieve baseline enantioresolution (Rs > 3.0) of the individual drug models within 7 min, an excellent linearity (R2 = 0.999) and an interday repeatability of 1.1% to 1.8% RSD. The performance of the immobilized column for quantification of racemate in commercial tablets showed a recovery of 86-98% from tablet matrices. Computational modeling by molecular docking was employed to investigate the feasible complexes between enantiomers and the chiral selector.

5.
Comput Biol Chem ; 83: 107096, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31377446

RESUMO

Sirtuin 1 (SIRT1) is a class III family of protein histone deacetylases involved in NAD+-dependent deacetylation reactions. It has been suggested that SIRT1 activators may have a protective role against type 2 diabetes, the aging process, and inflammation. This study aimed to explore and identify medicinal plant compounds from Indonesian Herbal Database (HerbalDB) that might potentially become a candidate for SIRT1 activators through a combination of in silico and in vitro methods. Two pharmacophore models were developed using co-crystalized ligands that allosterically bind with SIRT1 similar to the putative ligands used by SIRT1 activators. Then, these were used for the virtual screening of HerbalDB. The identified compounds were subjected to molecular docking and 50 ns molecular dynamics simulation. Molecular dynamics simulation was analyzed using MM-GB(PB)SA methods. The compounds identified by these methods were tested in an in vitro study using a SIRT-Glo™ luminescence assay. Virtual screening using structure-based pharmacophores predicted that mulberrin as the best candidate SIRT1 activator. Virtual screening using ligand-based pharmacophores predicted that gartanin, quinidine, and quinine to be the best candidates as SIRT1 activators. The molecular docking studies showed the important residues involved were Ile223 and Ile227 at the allosteric region. The MM-GB(PB)SA calculations confirmed that mulberrin, gartanin, quinidine, quinine showed activity at allosteric region and their EC50 in vitro values are 2.10; 1.79; 1.71; 1.14 µM, respectively. Based on in silico and in vitro study results, mulberin, gartanin, quinidine, and quinine had good activity as SIRT1 activators.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plantas Medicinais/química , Sirtuína 1/análise , Bases de Dados Factuais , Humanos , Indonésia , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA