Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetes Metab Syndr ; 18(3): 102970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442646

RESUMO

AIMS: To inform international guidelines, a systematic review and meta-analysis was conducted to assess the performance of diagnostic methods for type 2 diabetes in women with polycystic ovary syndrome (PCOS). METHODS: An updated systematic search was conducted on five databases from 2017 until October 2023 and combined with prior searches (from inception). Meta-analyses of diagnostic accuracy tests were conducted. RESULTS: Nine studies comprising 2628 women with PCOS were included. Against the oral glucose tolerance test, a haemoglobin A1C (HbA1c) ≥ 6.5% had a pooled sensitivity of 50.00% (95% confidence interval (CI): 35.53-64.47), specificity of 99.86% (95%CI: 99.49-99.98), and positive and negative predictive values of 92.59% (95%CI: 75.27-98.09) and 98.27% (95%CI: 97.73-98.68), respectively, with an accuracy of 98.17% (95%CI: 97.34-98.79). Fasting plasma glucose values ≥ 7.0 mmol/L had a pooled sensitivity of 58.14% (95%CI: 42.13-72.99), specificity of 92.59% (95%CI: 75.35-98.08), positive and negative predictive values of 92.59% (95%CI: 75.35-98.08) and 99.09% (95%CI: 98.71-99.36), respectively, and an accuracy of 99.00% (95%CI: 98.46-99.39) against the oral glucose tolerance test. CONCLUSIONS: To our knowledge, this is the first systematic review assessing the performance of diagnostic methods for type 2 diabetes in women with PCOS. We demonstrate that using a cut-off for HbA1c of ≥6.5% in this population may result in misdiagnosis of half of the women with type 2 diabetes. Our results directly informed the recommendations of the 2023 International PCOS Guideline, suggesting that the oral glucose tolerance test is the optimal method for screening and diagnosing type 2 diabetes in women with PCOS and is superior to fasting plasma glucose and HbA1c.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Jejum , Teste de Tolerância a Glucose , Hemoglobinas Glicadas , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Glicemia/análise , Hemoglobinas Glicadas/análise , Jejum/sangue , Biomarcadores/sangue , Biomarcadores/análise , Prognóstico
2.
Front Endocrinol (Lausanne) ; 14: 1149473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223019

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, affecting around 10% of women of reproductive age, with infertility, depression or anxiety, obesity, insulin resistance and type 2 diabetes as risk factors. The cause of PCOS is not known but there is a predisposition to developing PCOS in adult life that arises during fetal or perinatal life. PCOS also has a genetic predisposition and a number of genetic loci associated with PCOS have been identified. These loci contain 25 candidate genes which are currently being studied to define the syndrome. Although the name PCOS suggests a syndrome of the ovary, PCOS has also been associated with the central nervous system and other organ systems in the body due to the wide variety of symptoms it presents. Methods: Here, we examined the expression patterns of PCOS candidate genes in gonadal (ovary and testis), metabolic (heart, liver and kidney) and brain (brain and cerebellum) tissues during the first half of human fetal development and postnatally until adulthood using public RNA sequencing data. This study is an initial step for more comprehensive and translational studies to define PCOS. Results: We found that the genes were dynamically expressed in the fetal tissues studied. Some genes were significantly expressed in gonadal tissues, whilst others were expressed in metabolic or brain tissues at different time points prenatally and/or postnatally. HMGA2, FBN3 and TOX3 were highly expressed during the early stages of fetal development in all tissues but least during adulthood. Interestingly, correlation between expression of HMGA2/YAP1 and RAD50/YAP1 were significant in at least 5 of the 7 fetal tissues studied. Notably, DENND1A, THADA, MAPRE1, RAB5B, ARL14EP, KRR1, NEIL2 and RAD50 were dynamically expressed in all postnatal tissues studied. Conclusions: These findings suggest that these genes have tissue- or development-specific roles in multiple organs, possibly resulting in the various symptoms associated with PCOS. Thus the fetal origin of a predisposition to PCOS in adulthood could arise via the effects of PCOS candidate genes in the development of multiple organs.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Adulto , Gravidez , Masculino , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Gônadas , Feto , Encéfalo
3.
Hum Reprod ; 37(6): 1244-1254, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413103

RESUMO

STUDY QUESTION: Could changes in transforming growth factor ß (TGFß) signalling during foetal ovary development alter the expression of polycystic ovary syndrome (PCOS) candidate genes leading to a predisposition to PCOS? SUMMARY ANSWER: TGFß signalling molecules are dynamically expressed during foetal ovary development and TGFß1 inhibits expression of the androgen receptor (AR) and 7 (INSR, C8H9orf3, RAD50, ERBB3, NEIL2, IRF1 and ZBTB16) of the 25 PCOS candidate genes in foetal ovarian fibroblasts in vitro, whilst increasing expression of the AR cofactor TGFß-induced transcript 1 (TGFB1I1 or Hic5). WHAT IS KNOWN ALREADY: The ovarian stroma arises from the mesonephros during foetal ovary development. Changes in the morphology of the ovarian stroma are cardinal features of PCOS. The ovary is more fibrous and has more tunica and cortical and subcortical stroma. It is not known why this is and when this arises. PCOS has a foetal origin and perhaps ovarian stroma development is altered during foetal life to determine the formation of a polycystic ovary later in life. PCOS also has a genetic origin with 19 loci containing 25 PCOS candidate genes. In many adult tissues, TGFß is known to stimulate fibroblast replication and collagen deposition in stroma, though it has the opposite effect in the non-scaring foetal tissues. Our previous studies showed that TGFß signalling molecules [TGFßs and their receptors, latent TGFß binding proteins (LTBPs) and fibrillins, which are extracellular matrix proteins that bind LTBPs] are expressed in foetal ovaries. Also, we previously showed that TGFß1 inhibited expression of AR and 3 PCOS candidate genes (INSR, C8H9orf3 and RAD50) and stimulated expression of TGFB1I1 in cultured foetal ovarian fibroblasts. STUDY DESIGN, SIZE, DURATION: We used Bos taurus for this study as we can ethically collect foetal ovaries from across the full 9-month gestational period. Foetal ovaries (62-276 days, n = 19) from across gestation were collected from pregnant B. taurus cows for RNA-sequencing (RNA-seq) analyses. Foetal ovaries from B. taurus cows were collected (160-198 days, n = 6) for culture of ovarian fibroblasts. PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-seq transcriptome profiling was performed on foetal ovaries and the data on genes involved in TGFß signalling were extracted. Cells were dispersed from foetal ovaries and fibroblasts cultured and treated with TGFß1. The effects of TGFß regulation on the remaining eight PCOS candidate genes not previously studied (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) were examined. MAIN RESULTS AND THE ROLE OF CHANCE: Many TGFß signalling molecules are expressed in the foetal ovary, and for most, their expression levels increased accross gestation (LTBP1/2/3/4, FBN1, TGFB2/3, TGFBR2/3 and TGFB1I1), while a few decreased (FBN3, TGFBR3L, TGFBI and TGFB1) and others remained relatively constant (TGFBRAP1, TGFBR1 and FBN2). TGFß1 significantly decreased expression of PCOS candidate genes ERBB3, NEIL2, IRF1 and ZBTB16 in cultured foetal ovarian fibroblasts. LARGE SCALE DATA: The FASTQ files, normalized data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450. LIMITATIONS, REASONS FOR CAUTION: Regulation of PCOS candidate genes by TGFß was carried out in vitro and further studies in vivo are required. This study was carried out in bovine where foetal ovaries from across all of the 9-month gestational period were available, unlike in the human where it is not ethically possible to obtain ovaries from the second half of gestation. WIDER IMPLICATIONS OF THE FINDINGS: From our current and previous results we speculate that inhibition of TGFß signalling in the foetal ovary is likely to (i) increase androgen sensitivity by enhancing expression of AR, (ii) increase stromal activity by stimulating expression of COL1A1 and COL3A1 and (iii) increase the expression of 7 of the 25 PCOS candidate genes. Thus inhibition of TGFß signalling could be part of the aetiology of PCOS or at least the aetiology of polycystic ovaries. STUDY FUNDING/COMPETING INTEREST(S): Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Research Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN1078444) and the Centre for Research Excellence on Women's Health in Reproductive life (R.A., R.J.R. and K.H.; GTN1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


Assuntos
Síndrome do Ovário Policístico , Animais , Austrália , Bovinos , Feminino , Feto , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Gravidez , Fator de Crescimento Transformador beta
4.
Front Genet ; 12: 762177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35197999

RESUMO

Polycystic Ovary Syndrome (PCOS) is a multifactorial syndrome with reproductive, endocrine, and metabolic symptoms, affecting about 10% women of reproductive age. Pathogenesis of the syndrome is poorly understood with genetic and fetal origins being the focus of the conundrum. Genetic predisposition of PCOS has been confirmed by candidate gene studies and Genome-Wide Association Studies (GWAS). Recently, the expression of PCOS candidate genes across gestation has been studied in human and bovine fetal ovaries. The current study sought to identify potential upstream regulators and mechanisms associated with PCOS candidate genes. Using RNA sequencing data of bovine fetal ovaries (62-276 days, n = 19), expression of PCOS candidate genes across gestation was analysed using Partek Flow. A supervised heatmap of the expression data of all 24,889 genes across gestation was generated. Most of the PCOS genes fell into one of four clusters according to their expression patterns. Some genes correlated negatively (early genes; C8H9orf3, TOX3, FBN3, GATA4, HMGA2, and DENND1A) and others positively (late genes; FDFT1, LHCGR, AMH, FSHR, ZBTB16, and PLGRKT) with gestational age. Pathways associated with PCOS candidate genes and genes co-expressed with them were determined using Ingenuity pathway analysis (IPA) software as well as DAVID Bioinformatics Resources for KEGG pathway analysis and Gene Ontology databases. Genes expressed in the early cluster were mainly involved in mitochondrial function and oxidative phosphorylation and their upstream regulators included PTEN, ESRRG/A and MYC. Genes in the late cluster were involved in stromal expansion, cholesterol biosynthesis and steroidogenesis and their upstream regulators included TGFB1/2/3, TNF, ERBB2/3, VEGF, INSIG1, POR, and IL25. These findings provide insight into ovarian development of relevance to the origins of PCOS, and suggest that multiple aetiological pathways might exist for the development of PCOS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA