Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 76(1): 171-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151641

RESUMO

BACKGROUND: Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS: Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS: ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS: Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Células MCF-7 , Reparo do DNA , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Difosfonatos/farmacologia , Ácido Zoledrônico/farmacologia , Pravastatina/farmacologia , Tolerância a Radiação/efeitos da radiação , DNA , Linhagem Celular Tumoral
2.
J Med Chem ; 66(7): 4565-4587, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36921275

RESUMO

Structural modifications of the antibacterial drug nitrofurantoin were envisioned, employing drug repurposing and biology-oriented drug synthesis, to serve as possible anticancer agents. Eleven compounds showed superior safety in non-cancerous human cells. Their antitumor efficacy was assessed on colorectal, breast, cervical, and liver cancer cells. Three compounds induced oxidative DNA damage in cancer cells with subsequent cellular apoptosis. They also upregulated the expression of Bax while downregulated that of Bcl-2 along with activating caspase 3/7. The DNA damage induced by these compounds, demonstrated by pATM nuclear shuttling, was comparable in both MCF7 and MDA-MB-231 (p53 mutant) cell lines. Mechanistic studies confirmed the dependence of these compounds on p53-mediated pathways as they suppressed the p53-MDM2 interaction. Indeed, exposure of radiosensitive prostatic cancer cells to low non-cytotoxic concentrations of compound 1 enhanced the cytotoxic response to radiation indicating a possible synergistic effect. In vivo antitumor activity was verified in an MCF7-xenograft animal model.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Humanos , Feminino , Nitrofurantoína/farmacologia , Proteína Supressora de Tumor p53/genética , Reposicionamento de Medicamentos , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Biologia , Linhagem Celular Tumoral
3.
Nutr Cancer ; 74(6): 2207-2221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34643466

RESUMO

Chemo-radiotherapy is one of the promising approaches to treat bladder cancer, but its effectiveness is limited to sensitive patients. Polyphenol curcumin has shown anticancer and radiosensitizing potentials, but the mechanism is not fully understood. Here, the In Vitro response of UM-UC5 and UM-UC6 bladder cell lines to curcumin and radiation treatments was evaluated. The effect of curcumin on the DNA double-strand breaks repair system after treatment with ionizing radiation (2 Gy) was determined by immunofluorescence. Cell viability, proliferation, and survival were performed using trypan blue, MTT, clonogenic, and sphere-forming assays. The migratory ability of both cells was assessed by wound healing. We showed that curcumin treatment increased the radiosensitivity by modifying the DNA double-strand breaks repair kinetics of the most radioresistant cells UM-UC6 without affecting the radiosensitive UM-UC5. Moreover, UM-UC6 cell survival and proliferation was significantly decreased after the combination of curcumin with radiation. Bladder cell migration was also inhibited considerably. Curcumin was also shown to reduce the number and the volume of bladder cancer spheres of both cell lines. This study revealed that curcumin was able to radiosensitize resistant bladder cell line without affecting the sensitive one with minimal side effects through enhancing DNA damage signaling and repair pathway.


Assuntos
Curcumina , Radiossensibilizantes , Neoplasias da Bexiga Urinária , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Curcumina/farmacologia , DNA/genética , DNA/farmacologia , DNA/efeitos da radiação , Dano ao DNA , Reparo do DNA , Humanos , Radiossensibilizantes/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
Food Chem ; 255: 399-404, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29571492

RESUMO

Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries.


Assuntos
Ciclodextrinas/química , Composição de Medicamentos , Lipossomos/química , Sesquiterpenos/química , Solubilidade
5.
Beilstein J Org Chem ; 13: 835-844, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546841

RESUMO

Nerolidol (Ner), a major component of many plant essential oils, is known for its various biological properties. However, the low solubility of Ner in water and its susceptibility to degradation limit its application. The aim of our study was to improve the solubility and photostability of Ner through its encapsulation in different cyclodextrins (CDs). The formation constants of cis-, trans-Ner and their commercial mixture with various CDs (α-CD, ß-CD, γ-CD, HP-ß-CD, RAMEB, CRYSMEB and SBE-ß-CD) were determined by phase solubility studies and confirmed by the spectral displacement UV-visible method. The solubility of cabreuva essential oil (EO) rich in trans-Ner was also evaluated by total organic carbon (TOC) analysis. The encapsulation efficiency (EE %) of Ner in HP-ß-CD solid complexes was assessed by HPLC. The structural characterization of CD/trans-Ner inclusion complex was then conducted by NMR spectroscopy followed by molecular modelling studies. The effect of encapsulation on the Ner photostability was also carried out over time under UVB irradiation. AL-type phase-solubility diagrams were obtained, suggesting the formation of 1:1 CD/Ner inclusion complexes. The solubility of Ner was enhanced by approximately 70-fold in the presence of 10 mM HP-ß-CD. Moreover, high EE % values were obtained for 5:1 and 10:1 HP-ß-CD:Ner molar ratios. NMR and molecular modelling studies revealed the most stable structure for trans-Ner inside the CD cavity with the OH group oriented towards the wider rim of the CD. Finally, CD encapsulation of Ner as pure compound or as main component of the cabreuva EO, protected it from degradation. This effect was more pronounced as the concentration of CD increased. These findings suggested that CDs are promising encapsulating carriers for Ner by enhancing its solubility and stability and thereby its application in food industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA