Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 48, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365720

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified genetic variants linked to fat metabolism and related traits, but rarely pinpoint causative variants. This limitation arises from GWAS not considering functional implications of noncoding variants that can affect transcription factor binding and potentially regulate gene expression. The aim of this study is to investigate a candidate noncoding functional variant within a genetic locus flagged by a GWAS SNP associated with non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver fat accumulation in non-alcohol consumers. METHODS: CRISPR-Cas9 gene editing in HepG2 cells was used to modify the regulatory element containing the candidate functional variant linked to NAFLD. Global gene expression in mutant cells was assessed through RT-qPCR and targeted transcriptomics. A phenotypic assay measured lipid droplet accumulation in the CRISPR-Cas9 mutants. RESULTS: The candidate functional variant, rs2294510, closely linked to the NAFLD-associated GWAS SNP rs11206226, resided in a regulatory element within the DIO1 gene's promoter region. Altering this element resulted in changes in transcription factor binding sites and differential expression of candidate target genes like DIO1, TMEM59, DHCR24, and LDLRAD1, potentially influencing the NAFLD phenotype. Mutant HepG2 cells exhibited increased lipid accumulation, a hallmark of NAFLD, along with reduced LDL-C, HDL-C and elevated triglycerides. CONCLUSIONS: This comprehensive approach, that combines genome editing, transcriptomics, and phenotypic assays identified the DIO1 promoter region as a potential enhancer. Its activity could regulate multiple genes involved in the NAFLD phenotype or contribute to defining a polygenic risk score for enhanced risk assessment in NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , LDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Células Hep G2 , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Iodeto Peroxidase/genética , HDL-Colesterol/genética , HDL-Colesterol/metabolismo
2.
Nat Protoc ; 19(3): 791-830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129675

RESUMO

The ability to comprehensively analyze the chromatin state with single-cell resolution is crucial for understanding gene regulatory principles in heterogenous tissues or during development. Recently, we developed a nanobody-based single-cell CUT&Tag (nano-CT) protocol to simultaneously profile three epigenetic modalities-two histone marks and open chromatin state-from the same single cell. Nano-CT implements a new set of secondary nanobody-Tn5 fusion proteins to direct barcoded tagmentation by Tn5 transposase to genomic targets labeled by primary antibodies raised in different species. Such nanobody-Tn5 fusion proteins are currently not commercially available, and their in-house production and purification can be completed in 3-4 d by following our detailed protocol. The single-cell indexing in nano-CT is performed on a commercially available platform, making it widely accessible to the community. In comparison to other multimodal methods, nano-CT stands out in data complexity, low sample requirements and the flexibility to choose two of the three modalities. In addition, nano-CT works efficiently with fresh brain samples, generating multimodal epigenomic profiles for thousands of brain cells at single-cell resolution. The nano-CT protocol can be completed in just 3 d by users with basic skills in standard molecular biology and bioinformatics, although previous experience with single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is beneficial for more in-depth data analysis. As a multimodal assay, nano-CT holds immense potential to reveal interactions of various chromatin modalities, to explore epigenetic heterogeneity and to increase our understanding of the role and interplay that chromatin dynamics has in cellular development.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Genômica , Regulação da Expressão Gênica , Análise de Célula Única/métodos
3.
Microbiol Resour Announc ; 12(5): e0009623, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010430

RESUMO

Here, we report the draft genome sequences of 4 Bordetella pertussis isolates which correspond to major clones isolated between 2008 and 2014 from two outbreaks in northeastern Mexico. The B. pertussis clinical isolates belong to the ptxP3 lineage, and they are grouped into two major clusters, defined by the fimH allele.

4.
Hum Genomics ; 13(1): 20, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036066

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) of diseases and traits have found associations to gene regions but not the functional SNP or the gene mediating the effect. Difference in gene regulatory signals can be detected using chromatin immunoprecipitation and next-gen sequencing (ChIP-seq) of transcription factors or histone modifications by aligning reads to known polymorphisms in individual genomes. The aim was to identify such regulatory elements in the human liver to understand the genetics behind type 2 diabetes and metabolic diseases. METHODS: The genome of liver tissue was sequenced using 10X Genomics technology to call polymorphic positions. Using ChIP-seq for two histone modifications, H3K4me3 and H3K27ac, and the transcription factor CTCF, and our established bioinformatics pipeline, we detected sites with significant difference in signal between the alleles. RESULTS: We detected 2329 allele-specific SNPs (AS-SNPs) including 25 associated to GWAS SNPs linked to liver biology, e.g., 4 AS-SNPs at two type 2 diabetes loci. Two hundred ninety-two AS-SNPs were associated to liver gene expression in GTEx, and 134 AS-SNPs were located on 166 candidate functional motifs and most of them in EGR1-binding sites. CONCLUSIONS: This study provides a valuable collection of candidate liver regulatory elements for further experimental validation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Fígado/metabolismo , Doenças Metabólicas/genética , Alelos , Fator de Ligação a CCCTC/genética , Diabetes Mellitus Tipo 2/patologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado/patologia , Doenças Metabólicas/patologia , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico/genética
5.
Oncol Lett ; 17(3): 3581-3588, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30867801

RESUMO

Triple negative breast cancer (TNBC) is a subtype of breast cancer of heterogeneous nature that is negative for estrogen receptor (ER), progesterone receptor (PR) and growth factor human epidermal 2 (HER2) following immunohistochemical analysis. TNBC is frequently characterized by relapse and reduced survival. To date, there is no targeted therapy for this type of cancer. Chemotherapy, radiotherapy, and surgery remain as the standard treatments options. The lack of a target therapy and the heterogeneity of TNBC highlight the need to seek new therapeutic options. In this study, fresh tissue samples of TNBC were analyzed with a panel of 48 driver genes (212 amplicons) that are likely to be therapeutic targets. We found intron variants, missense, stop gained and splicing variants in TP53, PIK3CA and FLT3 genes. Interestingly, all the analyzed samples had at least two variants in the TP53 gene, one being a drug response variant, rs1042522, found in 94% of our samples. We also found seven additional variants not previously reported in the TP53 gene, to the best of our knowledge, with probable deleterious characteristics of the tumor suppressor gene. We found four genetic variants in the PIK3CA gene, including two missense variants. The rs2491231 variant in the FLT3 gene was identified in 84% (16/19) of the samples, which not yet reported for TNBC, to the best of our knowledge. In conclusion, genetic variants in TP53 were found in all TNBC tumors, with rs1042522 being the most frequent (94% of TNBC biopsies), which had not been previously reported in TNBC. Also, we found two missense variants in the PIK3CA gene. These results justify the validation of these genetic variants in a large cohort, as well as the extensive study of their impact on the prognosis and therapy management of TBNC.

6.
PeerJ ; 5: e3184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439463

RESUMO

Prebiotics are selectively fermentable dietary compounds that result in changes in the composition and/or activity of the intestinal microbiota, thus conferring benefits upon host health. In veterinary medicine, commercially available products containing prebiotics have not been well studied with regard to the changes they trigger on the composition of the gut microbiota. This study evaluated the effect of a commercially available nutraceutical containing fructo-oligosaccharides (FOS) and inulin on the fecal microbiota of healthy cats and dogs when administered for 16 days. Fecal samples were collected at two time points before and at two time points during prebiotic administration. Total genomic DNA was obtained from fecal samples and 454-pyrosequencing was used for 16S rRNA gene bacterial profiling. The linear discriminant analysis (LDA) effect size (LEfSe) method was used for detecting bacterial taxa that may respond (i.e., increase or decrease in its relative abundance) to prebiotic administration. Prebiotic administration was associated with a good acceptance and no side effects (e.g., diarrhea) were reported by the owners. A low dose of prebiotics (50 mL total regardless of body weight with the end product containing 0.45% of prebiotics) revealed a lower abundance of Gammaproteobacteria and a higher abundance of Veillonellaceae during prebiotic administration in cats, while Staphylococcaceae showed a higher abundance during prebiotic administration in dogs. These differences were not sufficient to separate bacterial communities as shown by analysis of weighted UniFrac distance metrics. A predictive approach of the fecal bacterial metagenome using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) also did not reveal differences between the period before and during prebiotic administration. A second trial using a higher dose of prebiotics (3.2 mL/kg body weight with the end product containing 3.1% of prebiotics) was tested in dogs and revealed a lower abundance of Dorea (family Clostridiaceae) and a higher abundance of Megamonas and other (unknown) members of Veillonellaceae during prebiotic administration. Again, these changes were not sufficient to separate bacterial communities or predicted metabolic profiles according to treatment. A closer analysis of bacterial communities at all time-points revealed highly individualized patterns of variation. This study shows a high interindividual variation of fecal bacterial communities from pet cats and dogs, that these communities are relatively stable over time, and that some of this variation can be attributable to prebiotic administration, a phenomenon that may be affected by the amount of the prebiotic administered in the formulation. This study also provides insights into the response of gut bacterial communities in pet cats and dogs during administration of commercially available products containing prebiotics. More studies are needed to explore potentially beneficial effects on host health beyond changes in bacterial communities.

7.
FEMS Microbiol Lett ; 363(16)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27412167

RESUMO

The 16S rRNA gene (16S rDNA) codes for RNA that plays a fundamental role during translation in the ribosome and is used extensively as a marker gene to establish relationships among bacteria. However, the complementary non-coding 16S rDNA (nc16S rDNA) has been ignored. An idea emerged in the course of analyzing bacterial 16S rDNA sequences in search for nucleotide composition and substitution patterns: Does the nc16S rDNA code? If so, what does it code for? More importantly: Does 16S rDNA evolution reflect its own evolution or the evolution of its counterpart nc16S rDNA? The objective of this minireview is to discuss these thoughts. nc strands often encode small RNAs (sRNAs), ancient components of gene regulation. nc16S rDNA sequences from different bacterial groups were used to search for possible matches in the Bacterial Small Regulatory RNA Database. Intriguingly, the sequence of one published sRNA obtained from Legionella pneumophila (GenBank: AE0173541) showed high non-random similarity with nc16S rDNA corresponding in part to the V5 region especially from Legionella and relatives. While the target(s) of this sRNA is unclear at the moment, its mere existence might open up a new chapter in the use of the 16S rDNA to study relationships among bacteria.


Assuntos
Bactérias/genética , Genes de RNAr , RNA Bacteriano , RNA Ribossômico 16S/genética , RNA não Traduzido , DNA Bacteriano , DNA Ribossômico/genética , Bases de Dados Genéticas , Evolução Molecular , Legionella pneumophila/genética , Filogenia , Interferência de RNA , Subunidades Ribossômicas Menores de Bactérias , Análise de Sequência de DNA
8.
Genome Announc ; 4(2)2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27034499

RESUMO

We report here the draft genome sequence of aStreptococcus pneumoniaestrain isolated in Monterrey, Mexico, MTY1662SN214, from a man with purpura fulminans. The strain belongs to the invasive and multidrug-resistant serogroup 19A, sequence type 320 (ST320). The draft genome sequence consists of 60 large contigs, a total of 2,069,474 bp, and has a G+C content of 39.7%.

9.
Genome Announc ; 4(2)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27103715

RESUMO

We present here the draft genome sequence of ITALIC! Streptococcus pneumoniaestrain MTY32702340SN814 isolated in Monterrey, Mexico, from a girl with bacterial meningitis. The strain belongs to the atypical and multidrug-resistant serogroup 19A. This is the first report in the literature of sequence type 3936 (ST3936) in ITALIC! S. pneumoniaeserotype 19A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA