Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2015: 583984, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064137

RESUMO

MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs), the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1ß, IL-8, LIF and TGFß2.

2.
Am J Transplant ; 7(9): 2082-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17614980

RESUMO

Corneal transplants normally enjoy a high percentage of survival, mainly because the eye is an immune-privileged site. When allograft failure occurs, it is most commonly due to rejection, an immune-mediated reaction that targets the corneal endothelium. While the exact mechanism by which the endothelium is targeted is still unknown, we postulate that corneal endothelial cell loss during allograft failure is mediated by apoptosis. Furthermore, because corneal endothelial cells do not normally regenerate, we hypothesize that suppressing apoptosis in the graft endothelium will promote transplant survival. In a murine model of transplantation, TUNEL staining and confocal microscopy showed apoptosis of the graft endothelium occurring in rejecting corneas as early as 2 weeks posttransplantation. We found that bcl-xL protected cultured corneal endothelial cells from apoptosis and that lentiviral delivery of bcl-xL to the corneal endothelium of donor corneas significantly improved the survival of allografts. These studies suggest a novel approach to improve corneal allograft survival by preventing apoptosis of the endothelium.


Assuntos
Apoptose/fisiologia , Transplante de Córnea/patologia , Endotélio Corneano/patologia , Terapia Genética/métodos , Rejeição de Enxerto/patologia , Proteína bcl-X/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA