Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(3): 252-260, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38308528

RESUMO

This study aims to investigate the feasibility of enhancing the charge collection efficiency (CCE) of a transmission chamber by reconfiguring its design and operation. The goal was to extend the range of dose-per-pulse (DPP) values with no or minimal recombination effects up to the ultra-high dose rate (UHDR) regime. The response of two transmission chambers, with electrode distance of 1 mm and 0.6 mm, respectively, was investigated as a function of applied voltage. The chambers were mounted one-by-one in the electron applicator of a 10 MeV FLASH-modified clinical linear accelerator. The chamber signals were measured as a function of nominal DPP, which was determined at the depth of dose maximum using EBT-XD film in solid water and ranged from 0.6 mGy per pulse to 0.9 Gy per pulse, for both the standard voltage of 320 V and the highest possible safe voltage of 1,200 V. The CCE was calculated and fitted with an empirical logistic function that incorporated the electrode distance and the chamber voltage. The CCE decreased with increased DPP. The CCE at the highest achievable DPP was 24% (36%) at 320 V and 51% (82%) at 1,200 V, for chambers with 1 mm (0.6 mm) electrode distance. For the combination of 1,200 V- and 0.6-mm electrode distance, the CCE was ∼100% for average dose rate up to 70 Gy/s at the depth of dose maximum in the phantom at a source-to-surface distance of 100 cm. Our findings indicate that minor modifications to a plane-parallel transmission chamber can substantially enhance the CCE and extending the chamber's operating range to the UHDR regime. This supports the potential of using transmission chamber-based monitoring solutions for UHDR beams, which could facilitate the delivery of UHDR treatments using an approach similar to conventional clinical delivery.


Assuntos
Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Imagens de Fantasmas
2.
Med Phys ; 50(10): 6569-6579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696040

RESUMO

PURPOSE: The increased normal tissue tolerance for FLASH radiotherapy (FLASH-RT), as compared to conventional radiotherapy, was first observed in ultra-high dose rate electron beams. Initial clinical trials in companion animals have revealed a high risk of developing osteoradionecrosis following high-dose single-fraction electron FLASH-RT, which may be related to inhomogeneities in the dose distribution. In the current study, we aim to evaluate the possibilities of intensity-modulated electron FLASH-RT in a clinical setting to ensure a homogeneous dose distribution in future veterinary and human clinical trials. METHODS: Our beam model in the treatment planning system electronRT (.decimal, LLC, Sanford, FL, USA) was based on a 10-MeV electron beam from a clinical linear accelerator used to treat veterinary patients with FLASH-RT in a clinical setting. In electronRT, the beam can be intensity-modulated using tungsten island blocks in the electron block cutout, and range-modulated using a customized bolus with variable thickness. Modulations were first validated in a heterogeneous phantom by comparing measured and calculated dose distributions. To evaluate the impact of intensity modulation in superficial single-fraction FLASH-RT, a treatment planning study was conducted, including eight canine cancer patient cases with simulated tumors in the head-and-neck region. For each case, treatment plans with and without intensity modulation were created for a uniform bolus and a range-modulating bolus. Treatment plans were evaluated using a target dose homogeneity index (HI), a conformity index (CI), the near-maximum dose outside the target ( D 2 % , Body - PTV ${D_{2{\mathrm{\% }},{\mathrm{\ Body}} - {\mathrm{PTV}}}}$ ), and the near-minimum dose to the target ( D 98 % ${D_{98\% }}$ ). RESULTS: By adding intensity modulation to plans with a uniform bolus, the HI could be improved (p = 0.017). The combination of a range-modulating bolus and intensity modulation provided a further significant improvement of the HI as compared to using intensity modulation in combination with a uniform bolus (p = 0.036). The range-modulating bolus also improved the CI compared to using a uniform bolus, both with an open beam (p = 0.046) and with intensity modulation (p = 0.018), as well as increased the D 98 % ${D_{98\% }}$ (p = 0.036 with open beam and p = 0.05 with intensity modulation) and reduced the median D 2 % , Body - PTV ${D_{2\% ,{\mathrm{\ Body}} - {\mathrm{PTV}}}}$ (not significant). CONCLUSIONS: By using intensity-modulated electron FLASH-RT in combination with range-modulating bolus, the target dose homogeneity and conformity in canine patients with simulated tumors in complex areas in the head-and-neck region could be improved. By utilizing this technique, we hope to decrease the dose outside the target volume and avoid hot spots in future clinical electron FLASH-RT studies, thereby reducing the risk of radiation-induced toxicity.


Assuntos
Neoplasias , Lesões por Radiação , Radioterapia de Intensidade Modulada , Humanos , Animais , Cães , Elétrons , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos
3.
Front Oncol ; 13: 1256760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766866

RESUMO

Background: FLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT. Methods: Privately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT. Results: Eleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses. Conclusion: This study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA