Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Haematologica ; 109(3): 725-739, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317878

RESUMO

Certain subtypes of acute myeloid leukemia (AML) in children have inferior outcome, such as AML with translocation t(7;12)(q36;p13) leading to an MNX1::ETV6 fusion along with high expression of MNX1. We have identified the transforming event in this AML and possible ways of treatment. Retroviral expression of MNX1 was able to induce AML in mice, with similar gene expression and pathway enrichment to t(7;12) AML patient data. Importantly, this leukemia was only induced in immune incompetent mice using fetal but not adult hematopoietic stem and progenitor cells. The restriction in transforming capacity to cells from fetal liver is in alignment with t(7;12)(q36;p13) AML being mostly seen in infants. Expression of MNX1 led to increased histone 3 lysine 4 mono-, di- and trimethylation, reduction in H3K27me3, accompanied with changes in genome-wide chromatin accessibility and genome expression, likely mediated through MNX1 interaction with the methionine cycle and methyltransferases. MNX1 expression increased DNA damage, depletion of the Lin-/Sca1+/c-Kit+ population and skewing toward the myeloid lineage. These effects, together with leukemia development, were prevented by pre-treatment with the S-adenosylmethionine analog Sinefungin. In conclusion, we have shown the importance of MNX1 in development of AML with t(7;12), supporting a rationale for targeting MNX1 and downstream pathways.


Assuntos
Histonas , Leucemia Mieloide Aguda , Criança , Lactente , Humanos , Animais , Camundongos , Metiltransferases , Cromatina , S-Adenosilmetionina , Leucemia Mieloide Aguda/genética , Metilação , Fatores de Transcrição , Proteínas de Homeodomínio/genética
3.
Sci Immunol ; 7(74): eabn8144, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36026441

RESUMO

FOXN1 is a transcription factor critical for the development of both thymic epithelial cell (TEC) and hair follicle cell (HFC) compartments. However, mechanisms controlling its expression remain poorly understood. To address this question, we performed thorough analyses of the evolutionary conservation and chromatin status of the Foxn1 locus in different tissues and states and identified several putative cis-regulatory regions unique to TECs versus HFCs. Furthermore, experiments using genetically modified mice with specific deletions in the Foxn1 locus and additional bioinformatic analyses helped us identify key regions and transcription factors involved in either positive or negative regulation of Foxn1 in both TECs and HFCs. Specifically, we identified SIX1 and FOXN1 itself as key factors inducing Foxn1 expression in embryonic and neonatal TECs. Together, our data provide important mechanistic insights into the transcriptional regulation of the Foxn1 gene in TEC versus HFC and highlight the role of FOXN1 in its autoregulation.


Assuntos
Células Epiteliais , Regulação da Expressão Gênica , Animais , Camundongos , Proteínas de Ligação a RNA , Timo
4.
Neuro Oncol ; 24(11): 1911-1924, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35468210

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive tumor that frequently exhibits gain of chromosome 7, loss of chromosome 10, and aberrantly activated receptor tyrosine kinase signaling pathways. Previously, we identified Mesenchyme Homeobox 2 (MEOX2), a gene located on chromosome 7, as an upregulated transcription factor in GBM. Overexpressed transcription factors can be involved in driving GBM. Here, we aimed to address the role of MEOX2 in GBM. METHODS: Patient-derived GBM tumorspheres were used to constitutively knockdown or overexpress MEOX2 and subjected to in vitro assays including western blot to assess ERK phosphorylation. Cerebral organoid models were used to investigate the role of MEOX2 in growth initiation. Intracranial mouse implantation models were used to assess the tumorigenic potential of MEOX2. RNA-sequencing, ACT-seq, and CUT&Tag were used to identify MEOX2 target genes. RESULTS: MEOX2 enhanced ERK signaling through a feed-forward mechanism. We identified Ser155 as a putative ERK-dependent phosphorylation site upstream of the homeobox-domain of MEOX2. S155A substitution had a major effect on MEOX2 protein levels and altered its subnuclear localization. MEOX2 overexpression cooperated with p53 and PTEN loss in cerebral organoid models of human malignant gliomas to induce cell proliferation. Using high-throughput genomics, we identified putative transcriptional target genes of MEOX2 in patient-derived GBM tumorsphere models and a fresh frozen GBM tumor. CONCLUSIONS: We identified MEOX2 as an oncogenic transcription regulator in GBM. MEOX2 increases proliferation in cerebral organoid models of GBM and feeds into ERK signaling that represents a core signaling pathway in GBM.


Assuntos
Glioblastoma , Glioma , Camundongos , Animais , Humanos , Genes Homeobox , Proteínas de Homeodomínio/genética , Glioma/genética , Glioblastoma/patologia , Proliferação de Células , Fatores de Transcrição/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
5.
Nat Commun ; 10(1): 368, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664630

RESUMO

The molecular pathogenesis of salivary gland acinic cell carcinoma (AciCC) is poorly understood. The secretory Ca-binding phosphoprotein (SCPP) gene cluster at 4q13 encodes structurally related phosphoproteins of which some are specifically expressed at high levels in the salivary glands and constitute major components of saliva. Here we report on recurrent rearrangements [t(4;9)(q13;q31)] in AciCC that translocate active enhancer regions from the SCPP gene cluster to the region upstream of Nuclear Receptor Subfamily 4 Group A Member 3 (NR4A3) at 9q31. We show that NR4A3 is specifically upregulated in AciCCs, and that active chromatin regions and gene expression signatures in AciCCs are highly correlated with the NR4A3 transcription factor binding motif. Overexpression of NR4A3 in mouse salivary gland cells increases expression of known NR4A3 target genes and has a stimulatory functional effect on cell proliferation. We conclude that NR4A3 is upregulated through enhancer hijacking and has important oncogenic functions in AciCC.


Assuntos
Carcinoma de Células Acinares/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Neoplasias das Glândulas Salivares/genética , Proteínas e Peptídeos Salivares/genética , Translocação Genética , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patologia , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos Par 4/química , Cromossomos Humanos Par 4/metabolismo , Cromossomos Humanos Par 9/química , Cromossomos Humanos Par 9/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Feminino , Loci Gênicos , Humanos , Masculino , Camundongos , Família Multigênica , Cultura Primária de Células , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Proteínas e Peptídeos Salivares/metabolismo
6.
Epigenetics ; 11(11): 780-790, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593557

RESUMO

Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs.


Assuntos
Caderinas/biossíntese , Proteínas de Ciclo Celular/biossíntese , Colangiocarcinoma/genética , Metilação de DNA/genética , Proteínas F-Box/biossíntese , Proteínas Ativadoras de GTPase/biossíntese , MicroRNAs/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Caderinas/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Epigênese Genética/genética , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Feminino , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Análise Serial de Tecidos , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
7.
Nat Protoc ; 8(10): 2022-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24071908

RESUMO

Epigenetic modifications such as carbon 5 methylation of the cytosine base in a CpG dinucleotide context are involved in the onset and progression of human diseases. A comprehensive understanding of the role of genome-wide DNA methylation patterns, the methylome, requires quantitative determination of the methylation states of all CpG sites in a genome. So far, analyses of the complete methylome by whole-genome bisulfite sequencing (WGBS) are rare because of the required large DNA quantities, substantial bioinformatic resources and high sequencing costs. Here we describe a detailed protocol for tagmentation-based WGBS (T-WGBS) and demonstrate its reliability in comparison with conventional WGBS. In T-WGBS, a hyperactive Tn5 transposase fragments the DNA and appends sequencing adapters in a single step. T-WGBS requires not more than 20 ng of input DNA; hence, the protocol allows the comprehensive methylome analysis of limited amounts of DNA isolated from precious biological specimens. The T-WGBS library preparation takes 2 d.


Assuntos
Metilação de DNA , Genômica/métodos , Análise de Sequência de DNA/métodos , Animais , Epigênese Genética , Humanos , Camundongos , Sulfitos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA