Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0278823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948390

RESUMO

IMPORTANCE: Antibiotic resistance and tolerance are substantial healthcare-related problems, hampering effective treatment of bacterial infections. Mutations in the phosphodiesterase GdpP, which degrades cyclic di-3', 5'-adenosine monophosphate (c-di-AMP), have recently been associated with resistance to beta-lactam antibiotics in clinical Staphylococcus aureus isolates. In this study, we show that high c-di-AMP levels decreased the cell size and increased the cell wall thickness in S. aureus mutant strains. As a consequence, an increase in resistance to cell wall targeting antibiotics, such as oxacillin and fosfomycin as well as in tolerance to ceftaroline, a cephalosporine used to treat methicillin-resistant S. aureus infections, was observed. These findings underline the importance of investigating the role of c-di-AMP in the development of tolerance and resistance to antibiotics in order to optimize treatment in the clinical setting.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Parede Celular/metabolismo , Resistência a Meticilina , Estresse Oxidativo , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
2.
Sci Signal ; 16(766): eabj8194, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595572

RESUMO

Staphylococcus aureus can cause infections that are often chronic and difficult to treat, even when the bacteria are not antibiotic resistant because most antibiotics act only on metabolically active cells. Subpopulations of persister cells are metabolically quiescent, a state associated with delayed growth, reduced protein synthesis, and increased tolerance to antibiotics. Serine-threonine kinases and phosphatases similar to those found in eukaryotes can fine-tune essential bacterial cellular processes, such as metabolism and stress signaling. We found that acid stress-mimicking conditions that S. aureus experiences in host tissues delayed growth, globally altered the serine and threonine phosphoproteome, and increased threonine phosphorylation of the activation loop of the serine-threonine protein kinase B (PknB). The deletion of stp, which encodes the only annotated functional serine-threonine phosphatase in S. aureus, increased the growth delay and phenotypic heterogeneity under different stress challenges, including growth in acidic conditions, the intracellular milieu of human cells, and abscesses in mice. This growth delay was associated with reduced protein translation and intracellular ATP concentrations and increased antibiotic tolerance. Using phosphopeptide enrichment and mass spectrometry-based proteomics, we identified targets of serine-threonine phosphorylation that may regulate bacterial growth and metabolism. Together, our findings highlight the importance of phosphoregulation in mediating bacterial quiescence and antibiotic tolerance and suggest that targeting PknB or Stp might offer a future therapeutic strategy to prevent persister formation during S. aureus infections.


Assuntos
Antibacterianos , Staphylococcus aureus , Animais , Camundongos , Humanos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
iScience ; 25(10): 105080, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157573

RESUMO

Early detection of pathogenic bacteria is needed for rapid diagnostics allowing adequate and timely treatment of infections. In this study, we show that secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) can be used as a diagnostic tool for rapid detection of bacterial infections as a supportive system for current state-of-the-art diagnostics. Volatile organic compounds (VOCs) produced by growing S. aureus or S. pneumoniae cultures on blood agar plates were detected within minutes and allowed for the distinction of these two bacteria on a species and even strain level within hours. Furthermore, we obtained a fingerprint of clinical patient samples within minutes of measurement and predominantly observed a separation of samples containing live bacteria compared to samples with no bacterial growth. Further development of this technique may reduce the time required for microbiological diagnosis and should help to improve patient's tailored treatment.

4.
Clin Microbiol Infect ; 28(7): 1022.e1-1022.e7, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35124264

RESUMO

OBJECTIVES: Difficult-to-treat infections caused by antibiotic-susceptible strains have been linked to the occurrence of persisters, a subpopulation of dormant bacteria that tolerate antibiotic exposure despite lacking genetic resistance. These persisters can be identified phenotypically by plating on nutrient agar because of their altered growth dynamics, resulting in colony-size heterogeneity. The occurrence of within-patient bacterial phenotypic heterogeneity in various infections and clinical determinants of persister formation remains unknown. METHODS: We plated bacteria derived from 132 patient samples of difficult-to-treat infections directly on nutrient-rich agar and monitored colony growth by time-lapse imaging. We retained 36 Staphylococcus aureus monocultures for further analysis. We investigated clinical factors associated with increased colony growth-delay with regression analyses. We corroborated the clinical findings using in vitro grown static biofilms exposed to distinct antibiotics. RESULTS: The extent of phenotypic heterogeneity of patient-derived S. aureus varied substantially between patients (from no delay to a maximum of 57.6 hours). Increased heterogeneity coincided with increased median colony growth-delay. Multivariable regression showed that rifampicin treatment was significantly associated with increased median growth-delay (13.3 hours; 95% CI 7.13-19.6 hours; p < 0.001). S. aureus grown in biofilms and exposed to high concentrations of rifampicin or a combination of rifampicin with clindamycin or levofloxacin exhibited prolonged growth-delay (p < 0.05 for 11 of 12 comparisons), correlating with a strain-dependent increase in antibiotic tolerance. DISCUSSION: Colony-size heterogeneity upon direct sampling of difficult-to-treat S. aureus infections was frequently observed. Hence, future studies are needed to assess the potential benefit of phenotypic heterogeneity quantification for staphylococcal infection prognosis and treatment guidelines.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Ágar , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Rifampina , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
6.
Sci Rep ; 10(1): 16084, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999342

RESUMO

Populations of genetically identical bacteria are phenotypically heterogeneous, giving rise to population functionalities that would not be possible in homogeneous populations. For instance, a proportion of non-dividing bacteria could persist through antibiotic challenges and secure population survival. This heterogeneity can be studied in complex environmental or clinical samples by spreading the bacteria on agar plates and monitoring time to growth resumption in order to infer their metabolic state distribution. We present ColTapp, the Colony Time-lapse application for bacterial colony growth quantification. Its intuitive graphical user interface allows users to analyze time-lapse images of agar plates to monitor size, color and morphology of colonies. Additionally, images at isolated timepoints can be used to estimate lag time. Using ColTapp, we analyze a dataset of Staphylococcus aureus time-lapse images including populations with heterogeneous lag time. Colonies on dense plates reach saturation early, leading to overestimation of lag time from isolated images. We show that this bias can be corrected by taking into account the area available to each colony on the plate. We envision that in clinical settings, improved analysis of colony growth dynamics may help treatment decisions oriented towards personalized antibiotic therapies.


Assuntos
Contagem de Colônia Microbiana/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Ágar , Algoritmos , Carga Bacteriana/métodos , Carga Bacteriana/estatística & dados numéricos , Contagem de Colônia Microbiana/estatística & dados numéricos , Humanos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Staphylococcus aureus/citologia , Staphylococcus aureus/crescimento & desenvolvimento , Imagem com Lapso de Tempo , Interface Usuário-Computador
7.
FEMS Microbiol Ecol ; 96(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816007

RESUMO

Studies of controlled lab animals and natural populations represent two insightful extremes of microbiota research. We bridged these two approaches by transferring lab-bred female C57BL/6 mice from a conventional mouse facility to an acclimation room and then to an outdoor enclosure, to investigate how the gut microbiota changes with environment. Mice residing under constant conditions served as controls. Using 16S rRNA sequencing of fecal samples, we found that the shift in temperature and humidity, as well as exposure to a natural environment, increased microbiota diversity and altered community composition. Community composition in mice exposed to high temperatures and humidity diverged as much from the microbiota of mice housed outdoors as from the microbiota of control mice. Additionally, infection with the nematode Trichuris muris modulated how the microbiota responded to environmental transitions: The dynamics of several families were buffered by the nematodes, while invasion rates of two taxa acquired outdoors were magnified. These findings suggest that gut bacterial communities respond dynamically and simultaneously to changes within the host's body (e.g. the presence of nematodes) and to changes in the wider environment of the host.


Assuntos
Microbioma Gastrointestinal , Trichuris , Animais , Bactérias/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
8.
Front Microbiol ; 11: 1415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695082

RESUMO

Staphylococcus aureus causes chronic and relapsing infections, which may be difficult to treat. So-called small colony variants (SCVs) have been associated with chronic infections and their occurrence has been shown to increase under antibiotic pressure, low pH and intracellular localization. In clinics, S. aureus isolated from invasive infections often show a dysfunction in the accessory gene regulator (agr), a major virulence regulatory system in S. aureus. To assess whether intracellular environment and agr function influence SCV formation, an infection model was established using lung epithelial cells and skin fibroblasts. This allowed analyzing intracellular survival and localization of a panel of S. aureus wild type strains and their isogenic agr knock out mutants as well as a natural dysfunctional agr strain by confocal laser scanning microscopy (CLSM). Furthermore, bacterial colonies were quantified after 1, 3, and 5 days of intracellular survival by time-lapse analysis to determine kinetics of colony appearance and SCV formation. Here, we show that S. aureus strains with an agr knock out predominantly resided in a neutral environment, whereas wild type strains and an agr complemented strain resided in an acidic environment. S. aureus agr mutants derived from an intracellular environment showed a higher percentage of SCVs as compared to their corresponding wild type strains. Neutralizing acidic phagolysosomes with chloroquine resulted in a significant reduction of SCVs in S. aureus wild type strain 6850, but not in its agr mutant indicating a pH dependent formation of SCVs in the wild type strain. The in-depth understanding of the interplay between intracellular persistence, agr function and pH should help to identify new therapeutic options facilitating the treatment of chronic S. aureus infections in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA