Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Carbohydr Polym ; 338: 122167, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763706

RESUMO

2-Hydroxypropyl-ß-cyclodextrin (HPBCD) is one of the most important cyclodextrin derivatives, finding extensive applications in the pharmaceutical sector. Beyond its role as an excipient, HPBCD achieved orphan drug status in 2015 for Niemann-Pick type C disease treatment, prompting research into its therapeutic potential for various disorders. However, the acceptance of HPBCD as an active pharmaceutical ingredient may be impeded by its complex nature. Indeed, HPBCD is not a single entity with a well-defined structure, instead, it is a complex mixture of isomers varying in substituent positions and the degree of hydroxypropylation, posing several challenges for unambiguous characterization. Pharmacopoeias' methods only address the average hydroxypropylation extent, lacking a rapid approach to characterize the substituent positions on the CD scaffold. Recognizing that the distribution of substituents significantly influences the complexation ability and overall activity of the derivative, primarily by altering cavity dimensions, we present a straightforward and non-destructive method based on liquid state NMR spectroscopy to analyze the positions of the hydroxypropyl sidechains. This method relies on a single set of routine experiments to establish quantitative assignment and it provides a simple yet effective tool to disclose the substitution pattern of this complex material, utilizing easily accessible (400 MHz NMR) instrumentation.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Espectroscopia de Ressonância Magnética , 2-Hidroxipropil-beta-Ciclodextrina/química , Espectroscopia de Ressonância Magnética/métodos , Excipientes/química
2.
ACS Omega ; 9(16): 18495-18504, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680316

RESUMO

Fourteen diterpenes were isolated from methanol extracts of the aerial parts ofColeus comosus,Coleus forsteri "Marginatus", and Plectranthus ciliatus. The compounds belong to the abietane (1-4, 9-11, and 13), ent-clerodane (5-8), and ent-kaurane (14, 15) classes. Three new compounds were isolated from C. comosus, including 3-O-acetylornatin G (2), 3,12-di-O-acetylornatin G (3), ornatin B methyl ester (5), and ornatin F (4), for which we proposed a revised structure. The structures of the compounds were determined by comprehensive spectroscopic data analysis. The isolated diterpenes were examined in silico for their physicochemical and early ADME properties. Their antiproliferative effects were determined in vitro using human breast (MDA-MB-231 and MCF-7), cervical (HeLa), and glioblastoma (U-87 MG) cancer cell lines. The royleanone- and hydroquinone-type abietane diterpenes (9-13)exhibited the most potent antiproliferative activity against all cancer cell lines tested, particularly against glioblastoma cells, with IC50 values ranging from 1.1 to 15.6 µM.

3.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398627

RESUMO

The characteristic alkaloid component of the leaves of the catnip shrub (Catha edulis) is cathinone, and its synthetic analogs form a major group of recreational drugs. Cathinone derivatives are chiral compounds. In the literature, several chiral methods using cyclodextrins (CDs) have been achieved so far for diverse sets of analogs; however, a comprehensive investigation of the stability of their CD complexes has not been performed yet. To characterize the enantioselective complex formation, a systematic experimental design was developed in which a total number of 40 neutral, positively, and negatively charged CD derivatives were screened by affinity capillary electrophoresis and compared according to their cavity size, substituent type, and location. The functional groups responsible for the favorable interactions were identified in the case of para-substituted cathinone analog mephedrone, flephedrone, and 4-methylethcathinone (4-MEC) and in the case of 3,4-methylendioxy derivative butylone and methylenedioxypyrovalerone (MDPV). The succinylated-ß-CD and subetadex exhibited the highest complex stabilities among the studied drugs. The complex stoichiometry was determined using the Job's plot method, and the complex structures were further studied using ROESY NMR measurements. The results of our enantioselective complex formation study can facilitate chiral method development and may lead to evaluate potential CD-based antidotes for cathinone analogs.


Assuntos
Alcaloides , Ciclodextrinas , Ciclodextrinas/química , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos
4.
ACS Appl Polym Mater ; 5(10): 7918-7926, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854303

RESUMO

The achievement of biocompatible platforms for multimodal therapies is one of the major challenges in the burgeoning field of nanomedicine. Here, we report on a mixed ß- and γ-cyclodextrin-based branched polymeric material (ßγCD-NOPD) covalently integrating a nitric oxide (NO) photodonor (NOPD) within its macromolecular scaffold, and its supramolecular ensemble with a singlet oxygen (1O2) photosensitizer (PS) Zn(II) phthalocyanine (ZnPc) and the chemodrug Lenvatinib (LVB). This polymer is highly water-soluble and generates NO under visible blue light stimuli with an efficiency of more than 1 order of magnitude higher than that of the single NOPD. The PS, which in an aqueous solution is aggregated and non-photoresponsive, can be entangled in the polymeric network as a photoresponsive monomeric species. In addition, the poorly water-soluble LVB can be co-encapsulated within the polymeric host, which increases the drug solubility by more than 30-fold compared to the free drug and more than 2-fold compared with a similar branched polymer containing only ßCD units. The supramolecular nanoensemble, ca. 15 nm in diameter, retains well the photochemical properties of both the NOPD and PS, which can operate in parallel under light stimuli of different energies. Irradiation with blue and red light results in the photogeneration of NO and 1O2 associated with red fluorescence emission, without inducing any photodegradation of LVB. This result is not trivial and is due to the absence of significant, mutual interactions between the NOPD, the PS and LVB both in the ground and excited states, despite these components are confined in the same host. The proposed polymeric nanoplatform may represent a potential trimodal nanomedicine for biomedical research studies, since it combines the double photodynamic action of NO and 1O2, two species that do not suffer multidrug resistance, with the therapeutic activity of a conventional chemodrug.

5.
J Fungi (Basel) ; 9(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37755032

RESUMO

Polyporenic acids N-R (1-5), five novel 24-methylene lanostane triterpenes along with seven known polyporenic acids (6-12), were identified from the fruiting bodies of Buglossoporus quercinus. The isolation of compounds 1-12 was performed by a combination of multistep flash chromatography and reversed-phase high-performance liquid chromatography (HPLC). The structure determination was carried out by extensive spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) experiments. The isolated fungal metabolites were investigated for their antiproliferative activity in vitro by 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on the resistant Colo 320 human colon adenocarcinoma cell line expressing P-glycoprotein (ABCB1). The lanostane triterpenes exerted moderate antiproliferative activity with IC50 values in the range of 20.7-106.2 µM. A P-glycoprotein efflux pump modulatory test on resistant Colo 320 cells highlighted that fungal metabolites 3, 5, 8, and 10-12 have the ability to inhibit the efflux pump activity of cancer cells. Moreover, the drug interactions of triterpenes with doxorubicin were studied by the checkerboard method. Compounds 3-4, and 7-12 interacted in a synergistic manner, while an outstanding potency was detected for compound 9, which was defined as strong synergism (CI = 0.276). The current study reveals that B. quercinus is a remarkable source of fungal steroids with considerable chemosensitizing activity on cancer cells.

6.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768504

RESUMO

Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid fraction in human milk after lactose and lipids. HMOs are in the forefront of research since they have been proven to possess beneficial health effects, especially on breast-fed neonates. Although HMO research is a trending topic nowadays, readily available analytical methods suitable for the routine investigation of HMOs are still incomplete. NMR spectroscopy provides detailed structural information that can be used to indicate subtle structural differences, particularly for isomeric carbohydrates. Herein, we propose an NMR-based method to identify the major isomeric HMOs containing GlcNAc and/or Neu5Ac building blocks utilizing their amide functionality. Experimental conditions were optimized (H2O:D2O 9:1 v/v solvent at pH 3.0) to obtain 1H-15N HSQC and 1H-15N HSQC-TOCSY NMR spectra of the aforementioned building blocks in HMOs. Four isomeric HMO pairs, LNT/LNnT, 3'SL/6'SL, LNFP II/LNFP III, and LSTa/LSTb, were investigated, and complete NMR resonance assignments were provided. In addition, 1H and 15N NMR resonances were found to be indicative of various linkages, thereby facilitating the distinction of isomeric tri-, tetra-, and pentasaccharide HMOs. The rapid growth of HMO products (from infant formulas and dietary supplements to cosmetics) undoubtedly requires expanding the range of applicable analytical methods. Thus, our work provides a 15N NMR-based method to advance this challenging field of carbohydrate analysis.


Assuntos
Aleitamento Materno , Leite Humano , Lactente , Recém-Nascido , Feminino , Humanos , Leite Humano/química , Oligossacarídeos/química , Isomerismo , Espectroscopia de Ressonância Magnética
7.
Chemistry ; 29(29): e202300511, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36807937

RESUMO

In the quest for new therapies targeting hypoxia, aromatic endoperoxides have intriguing potential as oxygen releasing agents (ORAs) able to free O2 in tissues upon suitable trigger. Four aromatic substrates were synthesized and the formation of their corresponding endoperoxides was optimized in organic solvent upon selective irradiation of Methylene Blue, a low-cost photocatalyst, producing the reactive singlet oxygen species. Complexation of the hydrophobic substrates within a hydrophilic cyclodextrin (CyD) polymer allowed their photooxygenation in homogeneous aqueous environment using the same optimized protocol upon dissolution in water of the three readily accessible reagents. Notably, reaction rates were comparable in buffered D2 O and organic solvent and, for the first time, the photooxygenation of highly hydrophobic substrates was achieved for millimolar solutions in non-deuterated water. Quantitative conversion of the substrates, straightforward isolation of the endoperoxides and recovery of the polymeric matrix were achieved. Cycloreversion of one ORA to the original aromatic substrate was observed upon thermolysis. These results hold great potential for the launch of CyD polymers both as reaction vessels for green, homogeneous photocatalysis and as carrier for the delivery of ORAs in tissues.

8.
Nat Prod Res ; 37(19): 3357-3362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35587174

RESUMO

The alkaloid profile of Hyoscyamus reticulatus L. and Atropa belladonna subsp. caucasica (Kreyer) Avet have not been characterized yet. UHPLC-PDA-Q-TOF-MS/MS and LC-DAD-QqQ-MS/MS methods were used herein to characterize the metabolite profiles of these plants. Flash chromatography in combination with preparative- and semi preparative HPLC were utilized for the isolation of the compounds of interest. The structure of the isolated compounds was proposed based on their MS/MS fragmentation and NMR characteristics. As a total of 19 tropane derivatives, two tyramine derivatives (N-cis- and N-trans- feruloyl tyramine), a lignanamide (grossamide), an alkylamide (pellitorine) were identified in the root and herb extracts of H. reticulatus. Moreover, rutin and caffeoylquinic acids were found in the leaves and fruits, while kaempferol-3-O-glucoside-7-O-rhamnoside and quercetin-3-O-glucoside-rhamnoside-rhamnoside were exclusively characteristic for the leaves of H. reticulatus. The root and herb extracts of A. caucasica contained 16 tropane alkaloid derivatives along with methyl tropate and two tyramine derivatives.

9.
Molecules ; 29(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38202796

RESUMO

Xylobolus subpileatus is a widely distributed crust fungus reported from all continents except Antarctica, although considered a rare species in several European countries. Profound mycochemical analysis of the methanol extract of X. subpileatus resulted in the isolation of seven compounds (1-7). Among them, (3ß,22E)-3-methoxy-ergosta-4,6,814,22-tetraene (1) is a new natural product, while the NMR assignment of its already known epimer (2) has been revised. In addition to a benzohydrofuran derivative fomannoxin (3), four ergostane-type triterpenes 4-7 were identified. The structure elucidation of the isolated metabolites was performed by one- and two-dimensional NMR and MS analysis. Compounds 2-7 as well as the chloroform, n-hexane, and methanol extracts of X. subpileatus were evaluated for their tyrosinase, acetylcholinesterase, and butyrylcholinesterase inhibitory properties. Among the examined compounds, only fomannoxin (3) displayed the antityrosinase property with 51% of inhibition, and the fungal steroids proved to be inactive. Regarding the potential acetylcholinesterase (AChE) inhibitory activity of the fungal extracts and metabolites, it was demonstrated that the chloroform extract and compounds 3-4 exerted noteworthy inhibitory activity, with 83.86 and 32.99%, respectively. The butyrylcholinesterase (BChE) inhibitory assay revealed that methanol and chloroform extracts, as well as compounds 3 and 4, exerted notable activity, while the rest of the compounds proved to be only weak enzyme inhibitors. Our study represents the first report on the chemical profile of basidiome of the wild-growing X. subpileatus, offering a thorough study on the isolation and structure determination of the most characteristic biologically active constituents of this species.


Assuntos
Basidiomycota , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Butirilcolinesterase , Clorofórmio , Metanol , Extratos Vegetais
10.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430926

RESUMO

Acid-base properties of cyclodextrins (CDs), persubstituted at C-6 by 3-mercaptopropionic acid, sualphadex (Suα-CD), subetadex (Suß-CD) and sugammadex (Suγ-CD, the antidote of neuromuscular blocking steroids) were studied by 1H NMR-pH titrations. For each CD, the severe overlap in protonation steps prevented the calculation of macroscopic pKa values using the standard data fitting model. Considering the full symmetry of polycarboxylate structures, we reduced the number of unknown NMR parameters in the "Q-fitting" or the novel "equidistant macroscopic" evaluation approaches. These models already provided pKa values, but some of them proved to be physically unrealistic, deceptively suggesting cooperativity in carboxylate protonations. The latter problem could be circumvented by adapting the microscopic site-binding (cluster expansion) model by Borkovec, which applies pairwise interactivity parameters to quantify the mutual basicity-decreasing effect of carboxylate protonations. Surprisingly, only a single averaged interactivity parameter could be calculated reliably besides the carboxylate 'core' microconstant for each CD derivative. The speciation of protonation isomers hence could not be resolved, but the optimized microscopic basicity parameters could be converted to the following sets of macroscopic pKa values: 3.84, 4.35, 4.81, 5.31, 5.78, 6.28 for Suα-CD; 3.82, 4.31, 4.73, 5.18, 5.64, 6.06, 6.54 for Suß-CD and 3.83, 4.28, 4.65, 5.03, 5.43, 5.81, 6.18, 6.64 for Suγ-CD. The pH-dependent charge of these compounds can now be accurately calculated, in support of designing new analytical methods to exploit their charge-dependent molecular recognition such as in cyclodextrin-aided chiral capillary electrophoresis.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Eletroforese Capilar/métodos
11.
J Chromatogr A ; 1683: 463506, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36195006

RESUMO

The present contribution describes the application of three single-isomeric cyclodextrin derivatives for the first time - Sugammadex, Subetadex and Sualphadex as chiral selectors. Their recognition ability was investigated by means of chiral capillary electrophoresis, on a pool of cathinone and amphetamine derivatives. The selectors differ in cavity sizes and in the number of ionizable groups which evidently influenced their enantioselectivity performance. Their common feature is their high isomeric purity that enabled the detailed study of the molecular association between the cathinone guest and the cyclodextrin host at the atomic level. With the aid of enantiopure cathinone derivatives, the migration order could also be determined in capillary electrophoresis. As the result of the capillary electrophoresis screening, partial or baseline chiral separation of 19 cathinones and an amphetamine derivative could be achieved, and the systematic study was performed focusing on three different pH conditions pH = 7.0, pH = 5.0 and pH = 2.5 and several different selector concentrations. Among the tested derivatives Subetadex is the best performing chiral selector, especially under acidic pH values for separating enantiomers, proven not only by capillary electrophoresis but also by 1D and 2D NMR measurements.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ciclodextrinas/química , Sugammadex , beta-Ciclodextrinas/química , Eletroforese Capilar/métodos , Estereoisomerismo
12.
Phytochem Anal ; 33(8): 1205-1213, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111358

RESUMO

INTRODUCTION: 3-Nitropropionic acid (3-NPA) is a toxic compound that can accumulate in esterified form in the Fabaceae family. In the Lotae tribe, many species have been identified as 3-NPA producers (e.g., Securigera varia), while some of the genetically close Lotae plants were formerly reported as 3-NPA-free (e.g., Lotus corniculatus and Anthyllis vulneraria). These plants are used as forage and have a tradition in ethnomedicine, also, the extracts of A. vulneraria are used in cosmetics. OBJECTIVES: Our aim was to investigate the 3-NPA content of these selected Fabaceae species and to develop a validated quantitative method to evaluate 3-NPA concentrations in extracts of different herbal parts and cosmetic products. MATERIALS AND METHODS: A UHPLC-ESI-Orbitrap-MS/MS method was applied for detection and identification of 3-NPA derivatives in the form of glucose esters. For the quantitative analysis, an optimized sample processing method was developed. The free 3-NPA content was determined using HPLC-ESI-MS/MS. RESULTS: 3-NPA esters could be detected in all three species, but their quantity showed a high variation. S. varia contained 0.5-1.0 g/100 g of 3-NPA, while in L. corniculatus samples only trace quantities were detectable, below the LOQ (25 ng/ml). Most of the A. vulneraria samples showed similarly low concentrations, but one sample had 3-NPA levels comparable to S. varia. 3-NPA could not be detected in the tested cosmetics containing A. vulneraria extracts. CONCLUSIONS: Using highly sensitive analytical methods, new 3-NPA-containing species were identified. The developed validated quantitative method is suitable for the determination of 3-NPA concentrations in herbal samples.


Assuntos
Fabaceae , Cromatografia Líquida de Alta Pressão , Propionatos , Espectrometria de Massas em Tandem
13.
J Chromatogr A ; 1677: 463308, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35858490

RESUMO

The present work introduces a high-performance thin-layer chromatography (HPTLC)-direct bioautography method using the Gram-positive plant pathogenic bacterium, Rhodococcus fascians. The screening and isolation procedure comprised of a non-targeted high-performance thin-layer chromatography-effect-directed analysis (HPTLC-EDA) against Bacillus subtilis, B. subtilis subsp. spizizenii, R. fascians, and Aliivibrio fischeri, a targeted HPTLC-mass spectrometry (MS), and bioassay-guided column chromatographic (preparative flash and semi-preparative HPLC) fractionation and purification. The developed new separation methods enabled the discovery of four bioactive cis-clerodane diterpenes, solidagoic acid H (1), solidagoic acid E (2), solidagoic acid I (3), and solidagoic acid F (4), in the n-hexane extract of giant goldenrod (Solidago gigantea Ait.) leaf for the first time. These compounds were identified by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. The initially used HPTLC method (chloroform - ethyl acetate - methanol 15:3:2, V/V/V) was changed (to n-hexane - isopropyl acetate - methanol - acetic acid 29:20:1:1, V/V/V/V) to achieve the separation of the closely related isomer pairs (1-2 and 3-4). Compounds 1 and 3 exhibited moderate antibacterial activity against the Gram-positive B. subtilis subsp. spizizenii and R. fascians bacterial strains in microdilution assays with half-maximal inhibitory concentration (IC50) values in the range of 32.3-64.4 µg/mL. The mass spectrometric fragmentation of the isolated compounds was interpreted and their previously published NMR assignments lacking certain resonances were completed.


Assuntos
Diterpenos Clerodânicos , Solidago , Antibacterianos , Bacillus subtilis , Bioensaio , Cromatografia em Camada Fina/métodos , Metanol , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solidago/química
14.
J Chromatogr A ; 1675: 463089, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35613505

RESUMO

Non-protein amino acids are important metabolites of the Fabaceae family, possessing valuable biological effects in addition to their toxic properties. We have previously identified two non-protein amino acids homoproline and homopipecolic acid in Ononis species for the first time, and herein the study was extended to investigate further Fabaceae species (O. spinosa, O. arvensis, M. sativa, A. vulneraria) with medicinal, food or cosmetic uses. As the enantiomers of these beta amino acids can carry different activity or toxicity, our aim was to develop a chiral separation method for homoproline and homopipecolic acid enantiomers and apply it to plant samples. For this purpose, dansylated derivatives were prepared and a cyclodextrin-modified capillary electrophoresis in addition to a chiral HPLC method were developed. Although baseline separation was achieved by CE applying mono-(6-N-pyrrolidine-6-deoxy)-ß-CD, mono-(6-N-piperidine-6-deoxy)-ß-CD or sulfated-gamma-cyclodextrin at pH 6.0, the HPLC method was found to be more suitable for the analysis of the plant samples. Both homoproline and homopipecolic acid were confirmed in plant samples as racemates. The quantitative determination of homoproline and homopipecolic acid in several Fabaceae species were also aimed. Since these molecules can be found in the plants as esters, sample preparation was optimized to liberate the target molecules. Several SPE methods were tested for sample purification and a HPLC-MS/MS method using C8 stationary phase was developed and validated. The presence of homoproline and homopipecolic acid could be confirmed in all species ranging from 1 µg/g through 500 µg/g homopipecolic acid and 6 µg/g to 60 µg/g homoproline and significant changes could be observed between species, geographical origins, and botanical parts. Generally O. spinosa root samples were found to be the richest sources of the two amino acids, but a high variance could be observed between species.


Assuntos
Aminoácidos , Fabaceae , Aminoácidos/química , Eletroforese Capilar/métodos , Estereoisomerismo , Espectrometria de Massas em Tandem
15.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409208

RESUMO

Mitragynine (MTR), the main indole alkaloid of the well-known plant kratom (Mitragyna speciosa), is one of the most studied natural products nowadays, due to its remarkable biological effects. It is a partial agonist on the opioid receptors, and as such relieves pain without the well-known side-effects of the opioids applied in the clinical practice. MTR and its derivatives therefore became novel candidates for drug development. The poor aqueous solubility and low bioavailability of drugs are often improved by cyclodextrins (CyDs) as excipients through host-guest type complex formation. Among the wide variety of CyDs, sulfobutylether-beta-cyclodextrin (SBEßCyD) is frequently used and official in the European and U.S. Pharmacopoeia. Herein, the host-guest complexation of MTR with ßCyD and SBEßCyD was studied using chiroptical and NMR spectroscopy. It was found by NMR measurements that MTR forms a rather weak (logß11 = 0.8) 1:1 host-guest complex with ßCyD, while the co-existence of the 2MTR∙SBEßCyD and MTR∙SBEßCyD species was deducted from 1H NMR titrations in the millimolar MTR concentration range. Sulfobutylation of ßCyD significantly enhanced the affinity towards MTR. The structure of the formed inclusion complex was extensively studied by circular dichroism spectroscopy and 2D ROESY NMR. The insertion of the indole moiety was confirmed by both techniques.


Assuntos
Ciclodextrinas , Mitragyna , Alcaloides de Triptamina e Secologanina , beta-Ciclodextrinas , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética , Mitragyna/química , Solubilidade
16.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335280

RESUMO

In this contribution, we report a strategy to enhance the therapeutic action of the chemotherapeutic Sorafenib (SRB) through its combination with a multifunctional ß-cyclodextrin-based polymer able to deliver nitric oxide (NO) and emit green fluorescence upon visible light excitation (PolyCDNO). The basically water-insoluble SRB is effectively encapsulated in the polymeric host (1 mg mL-1) up to a concentration of 18 µg mL-1. The resulting host-guest supramolecular complex is able to release SRB in sink conditions and to preserve very well the photophysical and photochemical properties of the free PolyCDNO, as demonstrated by the similar values of the NO release and fluorescence emission quantum efficiencies found. The complex PolyCDNO/SRB internalizes in HEP-G2 hepatocarcinoma, MCF-7 breast cancer and ACHN kidney adenocarcinoma cells, localizing in all cases mainly at the cytoplasmic level. Biological experiments have been performed at SRB concentrations below the IC50 and with light doses producing NO at nontoxic concentrations. The results demonstrate exceptional mortality levels for PolyCDNO/SRB upon visible light irradiation in all the different cell lines tested, indicating a clear synergistic action between the chemotherapeutic drug and the NO. These findings can open up exciting avenues to potentiate the anticancer action of SRB and, in principle, to reduce its side effects through its use at low dosages when in combination with the photo-regulated release of NO.


Assuntos
Polímeros , beta-Ciclodextrinas , Celulose , Ciclodextrinas , Óxido Nítrico/metabolismo , Polímeros/química , Sorafenibe/farmacologia , beta-Ciclodextrinas/química
17.
PLoS One ; 17(3): e0265639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298568

RESUMO

Isoflavonoids with various structural elements show a promising potential effect on central nervous system activities. Despite their favorable medicinal properties, the pharmacokinetic characteristics of this thoroughly investigated group of natural phenolics have only been described to a limited extent. Regarding the lack of information about the BBB permeability of isoflavones, isoflavanones, and pterocarpans found in Ononis species, the aim of our study was to investigate their physico-chemical properties influencing their absorption and distribution. Furthermore, we aimed to characterize the possible MAO-B inhibiting features of Ononis isoflavonoids in silico. Octanol-water partitioning and BBB-PAMPA permeability of formononetin, calycosin D, onogenin, sativanone, medicarpin and maackiain were assessed for the first time in our study. The log P values ranged from 2.21 to 3.03 and log D7.4 values from 2.48 to 3.03, respectively, indicating optimal polarity for BBB permeation. The results of PAMPA-BBB expressed as log Pe values fell between -5.60 and -4.45, predicting their good permeation capability as well. The effective permeability values showed structure-dependent differences, indicating that the pterocarpan type skeleton was the most preferred type, followed by isoflavanones, then isoflavones. The methoxy or methylenedioxy substitution of the same skeleton did not influence the permeability significantly, contrary to an additional hydroxyl group. Membrane retention showed a similar structure dependent pattern to that of effective permeability, ranging from 16% to 70%. For the identification of volumes of chemical space related to particular biological activities the ChemGPS-NP framework was used. The MAO-B inhibitory potency and selectivity were also predicted and validated. Based on our results, MAO-B inhibitory potency could be predicted with good precision, but in the case of selectivity, only the direction could be concluded (favors MAO-B or MAO-A), not the magnitude. Our finding reflects that Ononis isoflavonoid aglycones show an excellent fit with the suggested parameters for BBB permeability and this is the first study to confirm the highly favorable position of these natural products for MAO-B inhibition.


Assuntos
Flavonas , Isoflavonas , Ononis , Sistema Nervoso Central , Isoflavonas/química , Monoaminoxidase , Ononis/química
18.
Orv Hetil ; 163(9): 343-349, 2022 02 27.
Artigo em Húngaro | MEDLINE | ID: mdl-35220272

RESUMO

Összefoglaló. A Magyar és az Európai Hypertonia Társaság legújabb ajánlásában a gyógyszer okozta szekunder hypertoniák gyakoribb okai között szerepel az Ephedra - csikófark (kínai nevén Mahuang) fajok drogjának (Ephedrae herba) felhasználása is. Összefoglaló közleményünk célja az Ephedra nemzetségbe tartozó, a gyógyászatban is felhasznált, a VIII. Magyar Gyógyszerkönyvben és a Kínai Gyógyszerkönyvben szereplo hivatalos fajoknak a részletes bemutatása. Betekintést nyújtunk történetükbe, továbbá leírjuk a bennük található vegyületek farmakológiai tulajdonságait és azok hatásait. Ismertetjük elonyeiket, mellékhatásaikat és lehetséges gyógyszerkölcsönhatásaikat. Ezenkívül feltárjuk fogyasztó- és testsúlycsökkento szerként való használatukat, étrend-kiegészítoként történo alkalmazásuk betiltásának okát, valamint tárgyaljuk a doppinglistán való szereplésük magyarázatát is. Ezzel párhuzamosan kitérünk az Ephedra fajok orvosi gyakorlatban betöltött szerepére is: rendeltetésszeru használatuk során a fitoterápiában - foleg kombinációban alkalmazva - számos jótékony hatás érheto el, de fontos hangsúlyozni óvatos használatukat és felismerni lehetséges mellékhatásaikat. Orv Hetil. 2022; 163(9): 343-349. Summary. The Hungarian and the European Society of Hypertension guidelines mention Ephedrae herba, the drug of Ephedra species (in Chinese "Mahuang") as one of the causes of secondary hypertension. The aim of our summary is to characterize the Ephedra species used in medicine (based on the VIII. Hungarian and the Chinese Pharmacopoeia), describe their history and their components alongside with possible pharmacological effects, benefits, side-effects, and interactions with other drugs. We demonstrate the herb's history from being a popular weight-loss product to being prohibited as a dietary supplement and citing it in the World Anti-Doping Agency's list. At the same time, we explain the role of the Ephedra species in the everyday medical practice. It is important to know their benefits in detail as used in combination with other herbs in phytotherapy, and recognize their possible side effects. Orv Hetil. 2022; 163(9): 343-349.


Assuntos
Redução de Peso , Humanos , Hungria
19.
J Pharm Biomed Anal ; 210: 114554, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34973466

RESUMO

Detailed polyphenol profiling of European hornbeam (Carpinus betulus L.) bark, leaf, male and female catkin extracts was performed by high-performance liquid chromatography-diode array detection coupled to tandem mass spectrometry (HPLC-DAD-MS/MS). A total of 194 compounds were characterized and tentatively identified. Gallo- and ellagitannins dominated in the methanol extracts, while flavonol glycosides and methoxylated flavones prevailed in the ethyl acetate samples. In the quest for diarylheptanoids, twelve compounds were isolated by the combination of subsequent reversed-phase flash chromatographic and high-performance liquid chromatographic methods. The structural elucidation of the isolated components was performed by ultrahigh-performance liquid chromatography-Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) as well as 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. Six known cyclic diarylheptanoids, together with a new compound were described in Carpinus betulus for the first time. The occurrence of a linear diarylheptanoid and a lignan has also been unprecedented in the genus Carpinus. Moreover, three known flavonol glycosides were isolated. Based on the identification of characteristic fragment ions, a new mass spectrometric fragmentation pathway for meta,meta-cyclophane-type diarylheptanoids was proposed. Quantities of the four major cyclic diarylheptanoids in European hornbeam were determined by a validated UHPLC-DAD method for the first time. The antioxidant properties of the extracts and the isolated compounds were assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Contribution of the individual constituents to the total radical scavenging activity of the samples was evaluated by an off-line DPPH-HPLC-DAD method. This allowed the identification of gallo- and ellagitannin derivatives as the constituents being primarily responsible for the antioxidant capacity of the extracts.


Assuntos
Antioxidantes , Diarileptanoides , Betulaceae , Cromatografia Líquida de Alta Pressão , Cone de Plantas , Extratos Vegetais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
20.
J Pharm Biomed Anal ; 209: 114482, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34856493

RESUMO

Remdesivir (REM) is the first antiviral drug (Veklury™) approved by the Food and Drug Administration for the therapy of COVID-19. Due to its poor water solubility, the preparation of Veklury™ requires a suitable solubilizing excipient at pH 2 conditions. For this purpose, the final formulation contains the randomly substituted sulfobutylether-ß-cyclodextrin (SBEßCD) as a complexing agent. Herein, extensive NMR spectroscopic study with various cyclodextrin (CD) derivatives were conducted to understand the interactions in SBEßCD - REM systems at the molecular level. The pKa value of REM has been determined experimentally for the first time, as the protonation state of the aminopyrrolo-triazine moiety can play a key role in CD-REM inclusion complex formation as SBEßCD has permanent negative charges. The UV-pH titration experiments yielded a pKa of 3.56, thus the majority of REM bears a positive charge at pH 2.0. NMR experiments were performed on ß- and γCD derivatives to determine complex stabilities, stoichiometries and structures. The stability constants were determined by nonlinear curve fitting based on 1H NMR titrations at pH 2.0, while Job's method was used to determine the stoichiometries. ßCD complexes were one order of magnitude more stable than their γCD counterparts. Sulfobutylation resulted in a significant increase in stability and the single isomer derivatives showed unexpectedly high stability values (logK = 4.35 for REM - per-6-SBEßCD). In the case of ßCDs, the ethylbutyl-moiety plays a key role in complexation immersing into the ßCD cavity, while the phenoxy-moiety overtakes and drives the inclusion of REM in the case of γCDs. This is the first comprehensive study of REM-CD complexation, allowing the design of new CD derivatives with tailored stabilities, thereby aiding the formulation or production and even the analytical characterization of REM.


Assuntos
Tratamento Farmacológico da COVID-19 , Ciclodextrinas , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Humanos , SARS-CoV-2 , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA