Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(10): e2100132, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694324

RESUMO

To ensure the long-term success of dental implants, a functional attachment of the soft tissue to the surface of the implant abutment is decisively important in order to prevent the penetration of bacteria into the implant-bone interface, which can trigger peri-implant disease. Here a surface modification approach is described that includes the covalent immobilization of the extracellular matrix (ECM) proteins fibronectin and laminin via a crosslinker to silanized Ti6Al4V and Y-TZP surfaces. The surface properties are evaluated using static contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The interaction of human gingival fibroblasts (HGFs) with the immobilized ECM proteins is verified by analyzing the localization of focal contacts, cell area, cell morphology, proliferation rate, and integrin expression. It is observed in the presence of fibronectin and laminin an increased cellular attachment, proliferation, and integrin expression of HGFs accompanied by a significantly higher number of focal adhesions. The presented approach holds great potential to enable a stronger bond between soft tissue and implant abutment surface. This could potentially help to prevent the penetration of bacteria in an in vivo application and thus reduce the risk of periimplant disease.


Assuntos
Implantes Dentários , Proteínas da Matriz Extracelular , Adesão Celular , Proliferação de Células , Dente Suporte , Fibroblastos , Gengiva , Humanos , Propriedades de Superfície , Titânio
2.
Mater Sci Eng C Mater Biol Appl ; 98: 635-648, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813067

RESUMO

Titanium niobium alloys exhibit a lower stiffness compared to Ti6Al4V, the 'gold standard' for load-bearing bone implants. Thus, the critical mismatch in stiffness between the implant and adjacent bone tissue could be addressed with TiNb alloys and thereby reduce stress shielding, which can result in bone resorption and subsequent implant loosening; however, the cellular response on the specific material is crucial for sufficient osseointegration. We therefore hypothesize that the response of human mesenchymal stromal cells (hMSC) and osteoblast-like cells on Ti45Nb surfaces can be improved by a novel nanoporous surface structure. For this purpose, an etching technique using hydrogen peroxide electrolyte solution was applied to Ti45Nb. The treated surfaces were characterized using SEM, LSM, AFM, nanoindentation, and contact angle measurements. Cell culture experiments using hMCS and MG-63 were conducted. The H2O2 treatment resulted in surface nanopores, an increase in surface wettability and a reduction in surface hardness. The proliferation of MG-63 was enhanced on TiNb45 compared to Ti6Al4V. MG-63 focal adhesion complexes were detected on all Ti45Nb surfaces, whereas the nanostructures notably increased the cell area and decreased cell solidity, indicating stimulated cell spreading and pseudopodia formation. Alizarin red stainings indicated that the nanoporous surfaces stimulated the osteogenic differentiation of hMSC. It can be concluded that the proposed surface treatment could potentially help to stimulate the osseointegration behaviour of the advantageous low stiff Ti45Nb alloy.


Assuntos
Ligas/química , Células-Tronco Mesenquimais/citologia , Nanoporos/ultraestrutura , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/química , Microscopia Eletrônica de Varredura , Osteogênese/fisiologia
3.
ACS Appl Mater Interfaces ; 10(45): 38669-38680, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30280884

RESUMO

High-performance oxide ceramics (HPOC), such as alumina, zirconia, and dispersion ceramics thereof are successfully used as articulating components in joint arthroplasty. HPOC exhibit excellent wear resistance, high strength, and cytocompatible behavior; however, they lack sufficient tissue bonding capability. Thus, they are primarily deployed as low-wear-bearing articulating components in arthroplasty without direct tissue contact, although proper cellular stimulation would hold significant advantages. Here, we describe a surface modification approach for HPOC, enabling hydrolytically stable interfacial binding of c(RGDyK) peptides and BMP-2 proteins to significantly improve the adhesion and osteogenic differentiation of human mesenchymal stem cells (hMSCs) without altering the mechanical properties of the underlying ceramic substrates. Analyses of cellular attachment of murine fibroblasts (L929), human alveolar basal epithelial cells (A549), hMSCs on c(RGDyK), and osteogenic differentiation of hMSCs on BMP-2-coated interfaces demonstrate significant improvements of cell adhesion and an enhanced osteogenic differentiation potential in vitro. The presented approach provides a strategy for the development of a novel class of bioactive HPOC with osseointegration potential that could lead to novel therapeutic solutions for biomedical applications. Furthermore, the developed surface modification is designed in a way to be readily translated to other medically employed bioinert materials in the future.

4.
J Biomed Mater Res B Appl Biomater ; 106(1): 228-236, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28130877

RESUMO

Bioactive glasses form a strong bond with surrounding tissue and slowly degrade when implanted in vivo, stimulating the host bone to regenerate itself. We investigated the behaviour of microstructured bioactive glass surfaces (13-93) in an SBF reactor, which mimics physiological flow conditions. The structures were developed to potentially influence cell-biological long term processes such as osteogenic differentiation. It is therefore important that the structures withstand a certain time in SBF or body fluids. The experiments revealed that these structures were preserved up to 30 days. Although macroscopically stable, mass loss under flowing conditions was 2-2.5%, in contrast to <1% under static conditions. Polished samples in flowing medium lost 2.7% up to day 7 and then regained mass, resulting in overall 0.5% mass loss after 30 days. Thicker calcium phosphate rich layers for the samples in flowing medium were detected, demonstrating better bone bonding capacity than predicted conventionally. The hydroxyapatite conversion in the reactor was comparable to published in vivo data. We conclude that surface alterations that occur in vivo can be better mimicked by using the proposed flow bioreactor than by the established SBF method in static medium. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 228-236, 2018.


Assuntos
Calcificação Fisiológica , Vidro/química , Células-Tronco Mesenquimais/metabolismo , Velocidade do Fluxo Sanguíneo , Humanos , Células-Tronco Mesenquimais/citologia , Propriedades de Superfície
5.
Acta Biomater ; 44: 85-96, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27498177

RESUMO

Bioinert high performance ceramics exhibit detrimental features for implant components with direct bone contact because of their low osseointegrating capability. We hypothesized that periodical microstructures made of inert alumina ceramics can influence the osteogenic differentiation of human mesenchymal stromal cells (hMSC). In this study, we manufactured pillared arrays made of alumina ceramics with periodicities as low as 100µm and pillar heights of 40µm employing direct inkjet printing (DIP) technique. The response of hMSC to the microstructured surfaces was monitored by measuring cell morphology, viability and formation of focal adhesion complexes. Osteogenic differentiation of hMSCs was investigated by alkaline phosphatase activity, mineralization assays and expression analysis of respective markers. We demonstrated that MSCs react to the pillars with contact guidance. Subsequently, cells grow onto and form connections between the microstructures, and at the same time are directly attached to the pillars as shown by focal adhesion stainings. Cells build up tissue-like constructs with heights up to the micropillars resulting in increased cell viability and osteogenic differentiating properties. We conclude that periodical micropatterns on the micrometer scale made of inert alumina ceramics can mediate focal adhesion dependent cell adhesion and stimulate osteogenic differentiation of hMSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Cerâmica/farmacologia , Células-Tronco Mesenquimais/citologia , Microtecnologia/métodos , Osteogênese/efeitos dos fármacos , Impressão/métodos , Óxido de Alumínio/farmacologia , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Adesões Focais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
ACS Appl Mater Interfaces ; 8(28): 17805-16, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27299181

RESUMO

Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous solutions.

7.
Materials (Basel) ; 7(6): 4473-4492, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788687

RESUMO

High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA