Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Methods Appl Fluoresc ; 12(1)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37726007

RESUMO

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.


Assuntos
DNA , Proteínas , DNA/química , Proteínas/química , Transferência Ressonante de Energia de Fluorescência
3.
HardwareX ; 14: e00425, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37424928

RESUMO

Sample preparation is a crucial step in single-molecule experiments and involves passivating the microfluidic sample chamber, immobilizing the molecules, and setting experimental buffer conditions. The efficiency of the experiment depends on the quality and speed of sample preparation, which is often performed manually and relies on the experience of the experimenter. This can result in inefficient use of single-molecule samples and time, especially for high-throughput applications. To address this, a pressure-controlled microfluidic system is proposed to automate single-molecule sample preparation. The hardware is based on microfluidic components from ElveFlow and is designed to be cost-effective and adaptable to various microscopy applications. The system includes a reservoir pressure adapter and a reservoir holder designed for additive manufacturing. Two flow chamber designs Ibidi µ-slide and Grace Bio-Labs HybriWell chamber are characterized, and the flow characteristics of the liquid at different volume flow rates V˙ are simulated using CFD-simulations and compared to experimental and theoretical values. The goal of this work is to establish a straightforward and robust system for single-molecule sample preparation that can increase the efficiency of experiments and reduce the bottleneck of manual sample preparation, particularly for high-throughput applications.

4.
ArXiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36866225

RESUMO

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.

5.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
6.
Methods Mol Biol ; 2439: 173-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35226322

RESUMO

Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy. The suggested protocol yields the conformational states common to all molecules in the investigated sample, together with the associated conformational transition kinetics. The given model resolves states that are indistinguishable by their observed FRET signals and is estimated with 95% confidence using error calculations on FRET states and transition rate constants. In the end, a step-by-step user guide is given to reproduce the protocol with the Multifunctional Analysis Software to Handle single-molecule FRET data (MASH-FRET).


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Nanotecnologia , Imagem Individual de Molécula/métodos
7.
Bioinformatics ; 37(21): 3953-3955, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34478493

RESUMO

SUMMARY: Quantitative interpretation of single-molecule FRET experiments requires a model of the dye dynamics to link experimental energy transfer efficiencies to distances between atom positions. We have developed FRETraj, a Python module to predict FRET distributions based on accessible-contact volumes (ACV) and simulated photon statistics. FRETraj helps to identify optimal fluorophore positions on a biomolecule of interest by rapidly evaluating donor-acceptor distances. FRETraj is scalable and fully integrated into PyMOL and the Jupyter ecosystem. Here, we describe the conformational dynamics of a DNA hairpin by computing multiple ACVs along a molecular dynamics trajectory and compare the predicted FRET distribution with single-molecule experiments. FRET-assisted modeling will accelerate the analysis of structural ensembles in particular dynamic, non-coding RNAs and transient protein-nucleic acid complexes. AVAILABILITY AND IMPLEMENTATION: FRETraj is implemented as a cross-platform Python package available under the GPL-3.0 on Github (https://github.com/RNA-FRETools/fretraj) and is documented at https://RNA-FRETools.github.io/fretraj. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Imagem Individual de Molécula , Ecossistema , Corantes Fluorescentes/química
8.
Nat Commun ; 12(1): 4696, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349113

RESUMO

Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Temperatura Baixa , GTP Fosfo-Hidrolases/metabolismo , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoma/metabolismo , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779550

RESUMO

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Individual de Molécula/métodos , Biologia Molecular/instrumentação , Imagem Individual de Molécula/instrumentação
10.
J Am Chem Soc ; 142(34): 14422-14426, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786749

RESUMO

Fluorescent base analogs (FBAs) are powerful probes of nucleic acids' structures and dynamics. However, previously reported FBAs exhibit relatively low brightness and therefore limited sensitivity of detection. Here we report the hitherto brightest FBA that has ideal molecular rotor properties for detecting local dynamic motions associated with base pair mismatches. The new trans-stilbene annulated uracil derivative "tsT" exhibits bright fluorescence emissions in various solvents (ε × Φ = 3400-29 700 cm-1 M-1) and is highly sensitive to mechanical motions in duplex DNA (ε × Φ = 150-4250 cm-1 M-1). tsT is thereby a "smart" thymidine analog, exhibiting a 28-fold brighter fluorescence intensity when base paired with A as compared to T or C. Time-correlated single photon counting revealed that the fluorescence lifetime of tsT (τ = 4-11 ns) was shorter than its anisotropy decay in well-matched duplex DNA (θ = 20 ns), yet longer than the dynamic motions of base pair mismatches (0.1-10 ns). These properties enable unprecedented sensitivity in detecting local dynamics of nucleic acids.


Assuntos
DNA/análise , Corantes Fluorescentes/química , Uracila/química , Pareamento Incorreto de Bases , Teoria da Densidade Funcional , Fluorescência , Corantes Fluorescentes/síntese química , Conformação de Ácido Nucleico , Uracila/síntese química
11.
Methods Mol Biol ; 2113: 1-16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006303

RESUMO

Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.


Assuntos
Corantes Fluorescentes/química , RNA Catalítico/química , Imagem Individual de Molécula/métodos , Cápsulas , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Fosfolipídeos , Dobramento de RNA
12.
Methods Mol Biol ; 2106: 253-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889263

RESUMO

Labeling of large RNAs with reporting entities, e.g., fluorophores, has significant impact on RNA studies in vitro and in vivo. Here, we describe a minimally invasive RNA labeling method featuring nucleotide and position selectivity, which solves the long-standing challenge of how to achieve accurate site-specific labeling of large RNAs with a least possible influence on folding and/or function. We use a custom-designed reactive DNA strand to hybridize to the RNA and transfer the alkyne group onto the targeted adenine or cytosine. Simultaneously, the 3'-terminus of RNA is converted to a dialdehyde moiety under the experimental condition applied. The incorporated functionalities at the internal and the 3'-terminal sites can then be conjugated with reporting entities via bioorthogonal chemistry. This method is particularly valuable for, but not limited to, single-molecule fluorescence applications. We demonstrate the method on an RNA construct of 275 nucleotides, the btuB riboswitch of Escherichia coli.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Riboswitch , Imagem Individual de Molécula/métodos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
13.
Nat Commun ; 11(1): 104, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913262

RESUMO

The fidelity of group II intron self-splicing and retrohoming relies on long-range tertiary interactions between the intron and its flanking exons. By single-molecule FRET, we explore the binding kinetics of the most important, structurally conserved contact, the exon and intron binding site 1 (EBS1/IBS1). A comparison of RNA-RNA and RNA-DNA hybrid contacts identifies transient metal ion binding as a major source of kinetic heterogeneity which typically appears in the form of degenerate FRET states. Molecular dynamics simulations suggest a structural link between heterogeneity and the sugar conformation at the exon-intron binding interface. While Mg2+ ions lock the exon in place and give rise to long dwell times in the exon bound FRET state, sugar puckering alleviates this structural rigidity and likely promotes exon release. The interplay of sugar puckering and metal ion coordination may be an important mechanism to balance binding affinities of RNA and DNA interactions in general.


Assuntos
DNA/química , Magnésio/química , RNA/química , Açúcares/química , DNA/genética , Éxons , Transferência Ressonante de Energia de Fluorescência , Íntrons , Íons/química , Cinética , Conformação de Ácido Nucleico , RNA/genética , Imagem Individual de Molécula
14.
Chimia (Aarau) ; 73(4): 257-261, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30975253

RESUMO

Exploring the spatiotemporal dynamics of biomolecules on a single-molecule level requires innovative ways to make them spectroscopically visible. Fluorescence resonance energy transfer (FRET) uses a pair of organic dyes as reporters to measure distances along a predefined biomolecular reaction coordinate. For this nanoscopic ruler to work, the fluorescent labels need to be coupled onto the molecule of interest in a bioorthogonal and site-selective manner. Tagging large non-coding RNAs with single-nucleotide precision is an open challenge. Here we summarize current strategies in labeling riboswitches and ribozymes for fluorescence spectroscopy and FRET in particular. A special focus lies on our recently developed, DNA-guided approach that inserts two fluorophores through a stepwise process of templated functionality transfer and click chemistry.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Química Click , DNA , Corantes Fluorescentes , RNA
15.
Proc Natl Acad Sci U S A ; 115(47): 11917-11922, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397128

RESUMO

Unlike in vivo conditions, group II intron ribozymes are known to require high magnesium(II) concentrations ([Mg2+]) and high temperatures (42 °C) for folding and catalysis in vitro. A possible explanation for this difference is the highly crowded cellular environment, which can be mimicked in vitro by macromolecular crowding agents. Here, we combined bulk activity assays and single-molecule Förster Resonance Energy Transfer (smFRET) to study the influence of polyethylene glycol (PEG) on catalysis and folding of the ribozyme. Our activity studies reveal that PEG reduces the [Mg2+] required, and we found an "optimum" [PEG] that yields maximum activity. smFRET experiments show that the most compact state population, the putative active state, increases with increasing [PEG]. Dynamic transitions between folded states also increase. Therefore, this study shows that optimal molecular crowding concentrations help the ribozyme not only to reach the native fold but also to increase its in vitro activity to approach that in physiological conditions.


Assuntos
Espaço Intracelular/fisiologia , Auto-Splicing de RNA Ribossômico/fisiologia , Catálise/efeitos dos fármacos , Biologia Celular , Biologia Computacional/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Polietilenoglicóis , Dobramento de Proteína/efeitos dos fármacos , RNA Catalítico/metabolismo , RNA Catalítico/fisiologia , Auto-Splicing de RNA Ribossômico/metabolismo
16.
J Phys Chem B ; 122(23): 6134-6147, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29737844

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique to probe biomolecular structure and dynamics. A popular implementation of smFRET consists of recording fluorescence intensity time traces of surface-immobilized, chromophore-tagged molecules. This approach generates large and complex data sets, the analysis of which is to date not standardized. Here, we address a key challenge in smFRET data analysis: the generation of thermodynamic and kinetic models that describe with statistical rigor the behavior of FRET trajectories recorded from surface-tethered biomolecules in terms of the number of FRET states, the corresponding mean FRET values, and the kinetic rates at which they interconvert. For this purpose, we first perform Monte Carlo simulations to generate smFRET trajectories, in which a relevant space of experimental parameters is explored. Then, we provide an account on current strategies to achieve such model selection, as well as a quantitative assessment of their performances. Specifically, we evaluate the performance of each algorithm (change-point analysis, STaSI, HaMMy, vbFRET, and ebFRET) with respect to accuracy, reproducibility, and computing time, which yields a range of algorithm-specific referential benchmarks for various data qualities. Data simulation and analysis were performed with our MATLAB-based multifunctional analysis software for handling smFRET data (MASH-FRET).

17.
PLoS One ; 13(4): e0195277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652886

RESUMO

Single-molecule microscopy has become a widely used technique in (bio)physics and (bio)chemistry. A popular implementation is single-molecule Förster Resonance Energy Transfer (smFRET), for which total internal reflection fluorescence microscopy is frequently combined with camera-based detection of surface-immobilized molecules. Camera-based smFRET experiments generate large and complex datasets and several methods for video processing and analysis have been reported. As these algorithms often address similar aspects in video analysis, there is a growing need for standardized comparison. Here, we present a Matlab-based software (MASH-FRET) that allows for the simulation of camera-based smFRET videos, yielding standardized data sets suitable for benchmarking video processing algorithms. The software permits to vary parameters that are relevant in cameras-based smFRET, such as video quality, and the properties of the system under study. Experimental noise is modeled taking into account photon statistics and camera noise. Finally, we survey how video test sets should be designed to evaluate currently available data analysis strategies in camera-based sm fluorescence experiments. We complement our study by pre-optimizing and evaluating spot detection algorithms using our simulated video test sets.


Assuntos
Algoritmos , Transferência Ressonante de Energia de Fluorescência , Software , Cadeias de Markov , Estatística como Assunto , Gravação em Vídeo
18.
Nucleic Acids Res ; 46(3): e13, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29136199

RESUMO

Labeling of long RNA molecules in a site-specific yet generally applicable manner is integral to many spectroscopic applications. Here we present a novel covalent labeling approach that is site-specific and scalable to long intricately folded RNAs. In this approach, a custom-designed DNA strand that hybridizes to the RNA guides a reactive group to target a preselected adenine residue. The functionalized nucleotide along with the concomitantly oxidized 3'-terminus can subsequently be conjugated to two different fluorophores via bio-orthogonal chemistry. We validate this modular labeling platform using a regulatory RNA of 275 nucleotides, the btuB riboswitch of Escherichia coli, demonstrate its general applicability by modifying a base within a duplex, and show its site-selectivity in targeting a pair of adjacent adenines. Native folding and function of the RNA is confirmed on the single-molecule level by using FRET as a sensor to visualize and characterize the conformational equilibrium of the riboswitch upon binding of its cofactor adenosylcobalamin. The presented labeling strategy overcomes size and site constraints that have hampered routine production of labeled RNA that are beyond 200 nt in length.


Assuntos
DNA/química , Escherichia coli/química , RNA/química , Riboswitch , Coloração e Rotulagem/métodos , Adenina/química , Adenina/metabolismo , Carbocianinas/química , Cobamidas/química , Cobamidas/metabolismo , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Hibridização de Ácido Nucleico , Oligorribonucleotídeos/síntese química , Oligorribonucleotídeos/química , RNA/metabolismo , Dobramento de RNA
19.
J Biol Inorg Chem ; 21(8): 975-986, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27704222

RESUMO

RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li+, Na+, K+, Rb+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, and Ba2+. Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na+, K+, Rb+, NH4+, as well as Sr2+ and Ba2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K+ and Sr2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na+ ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes.


Assuntos
DNA/química , Quadruplex G , Metais/química , RNA/química , Sequência de Bases , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Concentração de Íons de Hidrogênio , Metais/metabolismo , Desnaturação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , RNA/genética , RNA/metabolismo , Espectrofotometria , Temperatura , Termodinâmica , Água/química
20.
Phys Chem Chem Phys ; 18(42): 29045-29055, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27783069

RESUMO

Carbocyanine dyes have a long-standing tradition in fluorescence imaging and spectroscopy, due to their photostability and large spectral separation between individual dye species. Herein, we explore the versatility of cyanine dyes to probe the dynamics of nucleic acids and we report on the interrelation of fluorophores, RNA, and metal ions, namely K+ and Mg2+. Photophysical parameters including the fluorescence lifetime, quantum yield and dynamic anisotropy are monitored as a function of the nucleic acid composition, conformation, and metal ion abundance. Occasional excursions to a non-fluorescent cis-state hint at the remarkable sensitivity of carbocyanines to their local environment. Comparison of time-correlated single photon experiments with all-atom molecular dynamics simulations demonstrate that the propensity of photoisomerization is dictated by sterical constraints imposed on the fluorophore. Structural features in the vicinity of the dye play a crucial role in RNA recognition and have far-reaching implications on the mobility of the fluorescent probe. An atomic level description of the mutual interactions will ultimately benefit the quantitative interpretation of single-molecule FRET measurements on large RNA systems.


Assuntos
Carbocianinas/química , RNA/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Magnésio/química , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Método de Monte Carlo , Conformação de Ácido Nucleico , Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA