Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670939

RESUMO

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Proteínas Hemolisinas , Hemólise , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/metabolismo , Estreptolisinas/química , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Streptococcus pneumoniae/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/antagonistas & inibidores , Hemólise/efeitos dos fármacos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Células A549 , Colesterol/metabolismo , Microscopia Crioeletrônica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fatores de Virulência/metabolismo
3.
NEJM Evid ; 3(1): EVIDoa2300172, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38320514

RESUMO

High-Dose Glucocorticoids for Sudden Hearing LossThis trial compared courses of high-dose intravenous prednisolone or high-dose oral dexamethasone versus standard-dose oral prednisone in adults with idiopathic sudden sensorineural hearing loss. At 30 days, systemic high-dose glucocorticoid therapy was not superior to a lower-dose regimen with respect to change in hearing threshold, and it was associated with a higher risk of side effects.


Assuntos
Glucocorticoides , Perda Auditiva Súbita , Adulto , Humanos , Dexametasona , Perda Auditiva Súbita/induzido quimicamente , Prednisona , Resultado do Tratamento
4.
Metabolomics ; 19(11): 89, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864615

RESUMO

INTRODUCTION: Twisted-leaf garlic (Allium obliquum L.) is a wild Allium species, which is traditionally used as aroma plant for culinary purposes due to its unique, garlic-like flavor. It represents an interesting candidate for domestication, breeding and cultivation. OBJECTIVES: The objective of this work was to explore and comprehensively characterize polar and semi-polar phytochemicals accumulating in leaves and bulbs of A. obliquum. METHOD: Plant material obtained from a multiyear field trial was analyzed using a metabolite profiling workflow based on ultra-high performance liquid chromatography-coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) and two chromatographic methods. For annotation of metabolites, tandem mass spectrometry experiments were carried out and the resulting accurate-mass collision-induced dissociation (CID) mass spectra interpreted. Onion and garlic bulb extracts were used as reference samples. RESULTS: Important metabolite classes influencing nutritional, sensory and technological properties were detected and structurally characterized including fructooligosaccharides with a degree of polymerization of 3-5, S-alk(en)ylcysteine sulfoxides and other S-substituted cysteine conjugates, flavonoids including O- and C-glycosylated flavones as well as O-glycosylated flavonols, steroidal saponins, hydroxycinnamic acid conjugates, phenylethanoids and free sphingoid bases. In addition, quantitative data for non-structural carbohydrates, S-alk(en)ylcysteine sulfoxides and flavonoids are provided. CONCLUSION: The compiled analytical data including CID mass spectra of more than 160 annotated metabolites provide for the first time a phytochemical inventory of A. obliquum and lay the foundation for its further use as aroma plant in food industry.


Assuntos
Alho , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Alho/química , Alho/metabolismo , Metabolômica , Cromatografia Líquida , Flavonoides/análise , Sulfóxidos/química , Sulfóxidos/metabolismo , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Compostos Fitoquímicos , Receptores Proteína Tirosina Quinases/metabolismo
5.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558036

RESUMO

Hydroethanolic leaf extracts of 14 Iranian Zataria multiflora Boiss. populations were screened for their antifungal activity against five plant pathogenic fungi and metabolically profiled using a non-targeted workflow based on UHPLC/ESI-QTOFMS. Detailed tandem mass-spectrometric analyses of one of the most active hydroethanolic leaf extracts led to the annotation of 68 non-volatile semi-polar secondary metabolites, including 33 flavonoids, 9 hydroxycinnamic acid derivatives, 14 terpenoids, and 12 other metabolites. Rank correlation analyses using the abundances of the annotated metabolites in crude leaf extracts and their antifungal activity revealed four O-methylated flavones, two flavanones, two dihydroflavonols, five thymohydroquinone glycoconjugates, and five putative phenolic diterpenoids as putative antifungal metabolites. After bioassay-guided fractionation, a number of mono-, di- and tri-O-methylated flavones, as well as three of unidentified phenolic diterpenoids, were found in the most active subfractions. These metabolites are promising candidates for the development of new natural fungicides for the protection of agro-food crops.


Assuntos
Antifúngicos , Lamiaceae , Antifúngicos/farmacologia , Irã (Geográfico) , Lamiaceae/química , Extratos Vegetais/farmacologia
6.
Angew Chem Int Ed Engl ; 61(48): e202208647, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36161448

RESUMO

Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization.


Assuntos
Corantes , Peptídeos , Carbocianinas/química , Corantes/química , Peptídeos/química , Concentração de Íons de Hidrogênio
7.
ACS Macro Lett ; 11(5): 711-715, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35570802

RESUMO

The introduction of stereogenic centers in supramolecular building blocks is used to unveil subtle changes in supramolecular structure and dynamics over time. Three stereogenic centers based on deuterium atoms were introduced in the side chains of a benzene-1,3,5-tricarboxamide (BTA) resulting in a supramolecular polymer in water that at first glance has a structure and dynamics identical to its achiral counterpart. Using three different techniques, the properties of the double helical polymers are compared after 1 day and 4 weeks. An increase in helical preference is observed over time as well as a decrease in the helical pitch and monomer exchange dynamics. It is proposed that the polymer of the chiral monomer needs time to arrive at its maximal preference in helical bias. These results indicate that the order and tight packing increase over time, while the dynamics of this supramolecular polymer decrease over time, an effect that is typically overlooked but unveiled by the isotopic chirality.


Assuntos
Benzeno , Polímeros , Polímeros/química , Água
8.
Macromol Rapid Commun ; 43(8): e2100914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35239224

RESUMO

The rational design of perfluorinated amphiphiles to control the supramolecular aggregation in an aqueous medium is still a key challenge for the engineering of supramolecular architectures. Here, the synthesis and physical properties of six novel non-ionic amphiphiles are presented. The effect of mixed alkylated and perfluorinated segments in a single amphiphile is also studied and compared with only alkylated and perfluorinated units. To explore their morphological behavior in an aqueous medium, dynamic light scattering (DLS) and cryogenic transmission electron microscopy/electron microscopy (cryo-TEM/EM) measurements are used. The assembly mechanisms with theoretical investigations are further confirmed, using the Martini model to perform large-scale coarse-grained molecular dynamics simulations. These novel synthesized amphiphiles offer a greater and more systematic understanding of how perfluorinated systems assemble in an aqueous medium and suggest new directions for rational designing of new amphiphilic systems and interpreting their assembly process.


Assuntos
Simulação de Dinâmica Molecular , Microscopia Eletrônica de Transmissão
9.
BMC Plant Biol ; 22(1): 92, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232393

RESUMO

BACKGROUND: Falcarinol-type polyacetylenes (PAs) such as falcarinol (FaOH) and falcarindiol (FaDOH) are produced by several Apiaceae vegetables such as carrot, parsnip, celeriac and parsley. They are known for numerous biological functions and contribute to the undesirable bitter off-taste of carrots and their products. Despite their interesting biological functions, the genetic basis of their structural diversity and function is widely unknown. A better understanding of the genetics of the PA levels present in carrot roots might support breeding of carrot cultivars with tailored PA levels for food production or nutraceuticals. RESULTS: A large carrot F2 progeny derived from a cross of a cultivated inbred line with an inbred line derived from a Daucus carota ssp. commutatus accession rich in PAs was used for linkage mapping and quantitative trait locus (QTL) analysis. Ten QTLs for FaOH and FaDOH levels in roots were identified in the carrot genome. Major QTLs for FaOH and FaDOH with high LOD values of up to 40 were identified on chromosomes 4 and 9. To discover putative candidate genes from the plant fatty acid metabolism, we examined an extended version of the inventory of the carrot FATTY ACID DESATURASE2 (FAD2) gene family. Additionally, we used the carrot genome sequence for a first inventory of ECERIFERUM1 (CER1) genes possibly involved in PA biosynthesis. We identified genomic regions on different carrot chromosomes around the found QTLs that contain several FAD2 and CER1 genes within their 2-LOD confidence intervals. With regard to the major QTLs on chromosome 9 three putative CER1 decarbonylase gene models are proposed as candidate genes. CONCLUSION: The present study increases the current knowledge on the genetics of PA accumulation in carrot roots. Our finding that carrot candidate genes from the fatty acid metabolism are significantly associated with major QTLs for both major PAs, will facilitate future functional gene studies and a further dissection of the genetic factors controlling PA accumulation. Characterization of such candidate genes will have a positive impact on carrot breeding programs aimed at both lowering or increasing PA concentrations in carrot roots.


Assuntos
Daucus carota , Polímero Poliacetilênico/metabolismo , Paladar , Daucus carota/genética , Daucus carota/metabolismo , Ácidos Graxos/metabolismo , Genes de Plantas , Fenótipo , Raízes de Plantas/metabolismo , Locos de Características Quantitativas
10.
Planta ; 255(1): 16, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878607

RESUMO

MAIN CONCLUSION: Elms, which have received insect eggs as a 'warning' of larval herbivory, enhance their anti-herbivore defences by accumulating salicylic acid and amplifying phenylpropanoid-related transcriptional and metabolic responses to hatching larvae. Plant responses to insect eggs can result in intensified defences against hatching larvae. In annual plants, this egg-mediated effect is known to be associated with changes in leaf phenylpropanoid levels. However, little is known about how trees-long-living, perennial plants-improve their egg-mediated, anti-herbivore defences. The role of phytohormones and the phenylpropanoid pathway in egg-primed anti-herbivore defences of a tree species has until now been left unexplored. Using targeted and untargeted metabolome analyses we studied how the phenylpropanoid pathway of Ulmus minor responds to egg-laying by the elm leaf beetle and subsequent larval feeding. We found that when compared to untreated leaves, kaempferol and quercetin concentrations increased in feeding-damaged leaves with prior egg deposition, but not in feeding-damaged leaves without eggs. PCR analyses revealed that prior insect egg deposition intensified feeding-induced expression of phenylalanine ammonia lyase (PAL), encoding the gateway enzyme of the phenylpropanoid pathway. Salicylic acid (SA) concentrations were higher in egg-treated, feeding-damaged leaves than in egg-free, feeding-damaged leaves, but SA levels did not increase in response to egg deposition alone-in contrast to observations made of Arabidopsis thaliana. Our results indicate that prior egg deposition induces a SA-mediated response in elms to feeding damage. Furthermore, egg deposition boosts phenylpropanoid biosynthesis in subsequently feeding-damaged leaves by enhanced PAL expression, which results in the accumulation of phenylpropanoid derivatives. As such, the elm tree shows similar, yet distinct, responses to insect eggs and larval feeding as the annual model plant A. thaliana.


Assuntos
Besouros , Ulmus , Animais , Herbivoria , Insetos , Larva , Folhas de Planta
11.
J Phys Chem B ; 125(37): 10538-10550, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34505509

RESUMO

The synthesis of a new amphiphilic 5,5',6,6'-tetrachlorobenzimidacarbocyanine dye derivative with -(CH2)2-(CF2)5-CF3 chains attached to the nitrogen atoms in the 1,1'-position, CF8O3, is reported. Depending on the dye concentration and the addition of MeOH, CF8O3 forms J- and H-aggregates in aqueous solutions. The aggregation behavior was investigated using steady-state absorption, linear dichroism, and fluorescence spectroscopy, as well as by cryogenic transmission electron microscopy (cryo-TEM). The J-band of the MeOH-free solution is monomer-like, rather broad, and less red-shifted with respect to the monomer absorption, indicating weak excitonic coupling and disorder effects. Cryo-TEM reveals a diversity of supramolecular structures, wherein linear and branched cylindrical micelles dominate. It is concluded that the high stiffness of fluoroalkyl chains does not allow the chains to splay and completely fill up the hydrophobic gap between opposing chromophores. This destabilizes the bilayers and favors the micellar structure motifs instead. The aggregates appearing at 30% MeOH show a split absorption spectrum consisting of a broad blue-shifted H-band and an accompanying sharp red-shifted J-band with perpendicular polarizations. These HJ-type aggregates are also composed of micellar fibers, but these bundle into rope-like strands. For 10% MeOH, a narrow bilayered tube is the dominating morphology. The observed MeOH dependence of aggregation reveals a clear cosolvent effect.


Assuntos
Halogenação , Micelas , Carbocianinas , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência
12.
Adv Funct Mater ; 31(22): 2009003, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34230823

RESUMO

2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.

13.
Food Chem ; 360: 129978, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000635

RESUMO

Qualitative and quantitative composition of non-structural carbohydrates comprising glucose, fructose, sucrose and fructooligosaccharides (FOS) is one of the key determinants of market suitability, storability and technological processability of onions. To develop a cost-effective and rapid tool for carbohydrate profiling, applicability of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy of onion juice was investigated with special regard to FOS patterns. As reference, detailed carbohydrate profiles of onion juices were generated by high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD). Hierarchical cluster analysis (HCA) of ATR-FTIR spectra was successfully applied for classifying onions into fresh market, storage and dehydrator type according to HPLC-ELSD profiles. A bootstrapping method for automatized test-set validation by projection to latent structures (PLS) algorithms using HPLC and ATR-FTIR spectroscopy data was developed. Model statistics showed promising perspectives for reliable quantification of individual saccharides and sum parameters. The presented methodology allows estimating the nutritional and pre-biotic value directly during cultivation and processing.


Assuntos
Carboidratos/análise , Análise de Alimentos/métodos , Cebolas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Raízes de Plantas/química , Caules de Planta/química
14.
Stem Cell Reports ; 16(3): 548-565, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33577796

RESUMO

As mammals evolved with exposure to particular diets, naturally abundant compounds may have become part of the set of environmental co-determinants that shaped brain structure and function. Here we investigated whether bioactive factors found in apples directly affect hippocampal neurogenesis in the adult mouse. We found that quercetin, the most abundant flavanol in apple peel, was anti-proliferative at high concentrations but pro-neurogenic at low concentrations. This was confirmed in vivo, with intraperitoneally delivered quercetin promoting survival and neuronal differentiation, without affecting proliferation. Using a bioassay-guided fractionation approach we also identified additional pro-neurogenic compounds in apple flesh that were not related to flavonoids. We found that 3,5-dihydroxybenzoic acid significantly increased neural precursor cell proliferation and neurogenesis. This work shows that both flavonoids and 3,5-dihydroxybenzoic acid are pro-neurogenic, not only by activating precursor cell proliferation but also by promoting cell-cycle exit, cellular survival, and neuronal differentiation.


Assuntos
Frutas/química , Hipocampo/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Malus/química , Neurogênese/efeitos dos fármacos , Quercetina/farmacologia , Resorcinóis/farmacologia , Animais , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Flavonoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
15.
ChemMedChem ; 16(9): 1457-1466, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33559331

RESUMO

A new series of nonionic gemini amphiphiles have been synthesized in a multi-step chemoenzymatic approach by using a novel A2 B2 -type central core consisting of conjugating glycerol and propargyl bromide on 5-hydroxy isophthalic acid. A pair of hydrophilic monomethoxy poly(ethylene glycol) (mPEG) and hydrophobic linear alkyl chains (C12 /C15 ) were then added to the core to obtain amphiphilic architectures. The aggregation tendency in aqueous media was studied by dynamic light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. The nanotransport potential of the amphiphiles was studied for model hydrophobic guests, that is, the dye Nile Red and the drug Nimodipine by using UV/Vis and fluorescence spectroscopy. Evaluation of the viability of amphiphile-treated A549 cells showed them to be well tolerated up to the concentrations studied. Being ester based, these amphiphiles exhibit stimuli-responsive sensitivity towards esterases, and a rupture of amphiphilic architecture was observed in the presence of immobilized Candida antarctica lipase (Novozym 435), thus facilitating release of the encapsulated guest from the aggregate.


Assuntos
Portadores de Fármacos/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Proteínas Fúngicas/metabolismo , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Lipase/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nimodipina/química , Nimodipina/metabolismo , Oxazinas/química , Polietilenoglicóis/química
16.
Metabolomics ; 17(2): 18, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502591

RESUMO

INTRODUCTION: Wheat (Triticum aestivum) it is one of the most important staple food crops worldwide and represents an important resource for human nutrition. Besides starch, proteins and micronutrients wheat grains accumulate a highly diverse set of phytochemicals. OBJECTIVES: This work aimed at the development and validation of an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains. METHOD: Reversed-phase ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) was used as analytical platform. For annotation of metabolites accurate mass collision-induced dissociation mass spectra were acquired and interpreted in conjunction with literature data, database queries and analyses of reference compounds. RESULTS: Based on reversed-phase UHPLC/ESI-QTOFMS an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains was developed. For method development the extraction procedure and the chromatographic separation were optimized. Using whole grains of eight wheat cultivars a total of 248 metabolites were annotated and characterized by chromatographic and tandem mass spectral data. Annotated metabolites comprise hydroquinones, hydroxycinnamic acid amides, flavonoids, benzoxazinoids, lignans and other phenolics as well as numerous primary metabolites such as nucleosides, amino acids and derivatives, organic acids, saccharides and B vitamin derivatives. For method validation, recovery rates and matrix effects were determined for ten exogenous model compounds. Repeatability and linearity were assessed for 39 representative endogenous metabolites. In addition, the accuracy of relative quantification was evaluated for six exogenous model compounds. CONCLUSIONS: In conjunction with non-targeted and targeted data analysis strategies the developed analytical workflow was successfully applied to discern differences in the profiles of semi-polar phytochemicals accumulating in whole grains of eight wheat cultivars.


Assuntos
Cromatografia Líquida/métodos , Metabolômica/métodos , Compostos Fitoquímicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Triticum/química , Grãos Integrais/química , Aminoácidos/análise , Benzoxazinas/análise , Carboidratos/análise , Cromatografia de Fase Reversa/métodos , Ácidos Cumáricos/análise , Flavonoides/análise , Análise de Alimentos , Humanos , Hidroquinonas/análise , Lignanas/análise , Fenóis/análise , Vitaminas/análise
17.
Plant Cell Environ ; 44(2): 519-534, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33190271

RESUMO

Divergence of chemical plant defence mechanisms within the Brassicaceae can be utilized to identify means against specialized pest insects. Using a bioassay-driven approach, we (a) screened 24 different Brassica napus cultivars, B. napus resyntheses and related brassicaceous species for natural plant resistance against feeding adults of the pollen beetle (Brassicogethes aeneus), (b) tested for gender-specific feeding resistance, (c) analysed the flower bud metabolomes by a non-targeted approach and (d) tested single candidate compounds for their antifeedant activity. (a) In no-choice assays, beetles were allowed to feed on intact plants. Reduced feeding activity was mainly observed on Sinapis alba and Barbarea vulgaris but not on B. napus cultivars. (b) Males fed less and discriminated more in feeding than females. (c) Correlation of the metabolite abundances with the beetles' feeding activity revealed several glucosinolates, phenylpropanoids, flavonoids and saponins as potential antifeedants. (d) These were tested in dual-bud-choice assays developed for medium-throughput compound screening. Application of standard compounds on single oilseed rape flower buds revealed highly deterrent effects of glucobarbarin, oleanolic acid and hederagenin. These results help to understand chemical plant defence in the Brassicaceae and are of key importance for further breeding strategies for insect-resistant oilseed rape cultivars.


Assuntos
Brassica napus/química , Besouros/fisiologia , Metabolômica , Animais , Brassica napus/metabolismo , Brassica napus/parasitologia , Feminino , Flavonoides/metabolismo , Glucosinolatos/metabolismo , Masculino , Pólen/fisiologia , Propanóis/metabolismo
18.
Mol Cell ; 79(6): 1024-1036.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32871103

RESUMO

Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestrutura
19.
J Am Chem Soc ; 142(41): 17644-17652, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32935541

RESUMO

Supramolecular fibers in water, micrometers long and several nanometers in width, are among the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that were long thought to be chains of single molecules stacked in one dimension (1D). Detailed cryogenic transmission electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume reconstructions unveiled helical repeats, ranging from 15 to 30 nm. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer formation, promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure, such as a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers.

20.
Nanoscale ; 12(26): 14222-14229, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32608434

RESUMO

Low biodegradability of graphene derivatives and related health risks are the main limiting factors for their in vivo biomedical applications. Here, we present the synthesis of enzyme-functionalized graphene sheets with self-degrading properties under physiological conditions and their applications in tumor therapy. The synergistic enzyme cascade glucose oxidase and myeloperoxidase are covalently conjugated to the surface of graphene sheets and two-dimensional (2D) platforms are obtained that can produce sodium hypochlorite from glucose. The enzyme-functionalized graphene sheets with up to 289 nm average size are degraded into small pieces (≤40 nm) by incubation under physiological conditions for 24 h. Biodegradable graphene sheets are further loaded with doxorubicin and their ability for tumor therapy is evaluated in vitro and in vivo. The laser-triggered release of doxorubicin in combination with the enzymatic activity of the functionalized graphene sheets results in a synergistic antitumor activity. Taking advantage of their neutrophil-like activity, fast biodegradability, high photo- and chemotherapeutic effects, the novel two-dimensional nanoplatforms can be used for tumor therapeutic applications.


Assuntos
Grafite , Corantes , Doxorrubicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA