Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(2): 930-46, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537675

RESUMO

UNLABELLED: Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE: Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for efficient viral replication. Simultaneously, KAP1 posttranslational modification is dramatically altered during infection. We observed an HAdV-mediated decrease in KAP1 SUMOylation, known to promote chromatin decondensation events. These findings indicate that HAdV induces the loss of KAP1 SUMOylation to minimize epigenetic gene silencing and to promote the SUMO modification of E1B-55K by a so far unknown mechanism.


Assuntos
Adenovírus Humanos/imunologia , Interações Hospedeiro-Patógeno , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Sumoilação , Proteína 28 com Motivo Tripartido
2.
PLoS Pathog ; 9(11): e1003775, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278021

RESUMO

Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad) serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24-48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx) are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms eradicating incoming viral DNA would increase Ad vector efficacy and safety for the patient.


Assuntos
Adenoviridae/metabolismo , Infecções por Adenovirus Humanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Proteólise , Fatores de Transcrição/metabolismo , Adenoviridae/genética , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Infecções por Adenovirus Humanos/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética
3.
Nucleic Acids Res ; 41(6): 3532-50, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396441

RESUMO

Death domain-associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein-protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenovírus Humanos/genética , Cromatina/metabolismo , DNA Helicases/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Adenovírus Humanos/fisiologia , Linhagem Celular , Cromatina/química , Proteínas Correpressoras , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Proteína Nuclear Ligada ao X
4.
Vitam Horm ; 82: 87-106, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20472134

RESUMO

Xenobiotic compounds enter the brain through nutrition, environmentals, and drugs. In order to maintain intrinsic homeostasis, the brain has to adapt to xenobiotic influx. Among others, steroid hormones appear as crucial mediators in this process. However, especially in the therapy of neurological diseases or brain tumors, long-term application of neuroactive drugs is advised. Several clinically important malignancies based on hormonal dysbalance rise up after treatment with neuroactive drugs, for example, sexual and mental disorders or severe cognitive changes. A drug-hormone cross talk proceeding over drug-mediated cytochrome P450 induction predominantly in the limbic system and the blood-brain barrier, consequently altered steroid hormone metabolism, and P450-mediated change of steroid hormone receptor expression and signaling may serve as an explanation for such disorders. Especially, the interplay between the expression of AR and P450 at the blood-brain barrier and in structures of the limbic system is of considerable interest in understanding brain's reaction on xenobiotic treatment. This chapter summarizes present models and concepts on brain's reaction after xenobiotics crossing the blood-brain barrier and invading the limbic system.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Sistema Límbico/metabolismo , Rede Nervosa/efeitos dos fármacos , Xenobióticos/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Humanos , Sistema Límbico/efeitos dos fármacos , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo
5.
Anal Biochem ; 398(1): 104-11, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903449

RESUMO

The cytochrome P450 subfamily CYP3A belongs to the most important detoxification enzymes. Because the main CYP3A isoforms are not polymorphic and therefore detract themselves from genetic screening as a potent prediction marker for drug metabolism or induction effects, effective in vitro testing of a putative drug-CYP3A interaction is indicated. We used mouse liver microsomes treated with the model drug phenytoin to set up an effective and reliable in vitro test system. A metabolic assay analyzing 7-alkoxyresorufin-O-dealkylation showed specific CYP3A-dependent 7-benzyloxyresorufin oxidation (BROD). This was confirmed by testing other alkoxyresorufins (7-ethoxy-, 7-methoxy-, and 7-pentoxyresorufin) in mice and correlation of the data with testosterone 6beta-hydroxylation and a plethora of isoform-specific chemical inhibitors (orphenadrine, chloramphenicol, nifedipine, ketoconazole, and sulfaphenazole). Isoform-specific expression and induction of CYP3A11 in mouse liver was tested by RNase protection assay, reverse transcription polymerase chain reaction (RT-PCR), and immunoblot. With the BROD assay, we could clearly dissect CYP3A11 from other P450s induced by phenytoin-like CYP2C29, CYP2B9, CYP1A1, and CYP4A. We conclude that the BROD assay is a specific tool to assign CYP3A induction by drugs or other chemicals, at least in a mouse model system.


Assuntos
Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ensaios Enzimáticos/métodos , Microssomos Hepáticos/enzimologia , Animais , Anticonvulsivantes/farmacologia , Western Blotting , Inibidores do Citocromo P-450 CYP3A , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxazinas/metabolismo , Oxirredução , Fenitoína/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/metabolismo
6.
J Neurochem ; 109(2): 670-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19226368

RESUMO

Inactivation of testosterone by specific hydroxylations is a main function of cytochrome P450 (P450, CYP) in the brain. Recent data imply that induction of brain P450s by neuroactive drugs alters steroid hormone levels and endocrine signalling, giving rise to endocrine disorders. In this study, we investigated this drug-hormone crosstalk in mouse brain. Phenytoin led to a significant increase of 2alpha-, 2beta-, 6beta-, 16alpha- and 16beta-hydroxytestosterones, while 6alpha- and 15alpha-hydroxytestosterones showed no significant alteration of their metabolism compared with untreated controls. Inhibition of testosterone hydroxylation using the chemical inhibitors orphenadrine, chloramphenicol, ketoconazole and nifedipine as well as antibodies against CYP3A- and 2B-isoforms pointed to major role of Cyp3a11 and an only minor function of Cyp2b9/10 in mouse brain. Cyp3a11 revealed to be the major isoform affected by phenytoin. There was considerable overlap of Cyp3a11 and AR expression in neuronal structures of the limbic system, namely the hippocampus, amygdala, hypothalamus and thalamus. Phenytoin treatment led to an increase of both, Cyp3a11 and AR expression in the limbic system. Additionally, the coherence between CYP3A and AR expression was analysed in PC-12 cells. Inhibition of phenytoin-induced endogenous CYP3A2 and AR by ketoconazole led a reduction of their expression to basal levels. We conclude that Cyp3a11 plays a crucial role in directing drug action to hormonal response within the limbic system of mouse brain in a so-called drug-hormone crosstalk.


Assuntos
Encéfalo/metabolismo , Citocromo P-450 CYP3A/biossíntese , Proteínas de Membrana/biossíntese , Receptores Androgênicos/biossíntese , Testosterona/metabolismo , Regulação para Cima/fisiologia , Xenobióticos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Inativação Metabólica/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Células PC12 , Ratos , Receptores Androgênicos/genética , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA