Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080051

RESUMO

In the current research, surface-modified SiO2 nanoparticles were used upon immersion in an applied base fluid (ethylene glycol:water = 1:1). The atomic layer deposition method (ALD) was introduced to obtain a thin layer of TiO2 to cover the surface of SiO2 particles. After the ALD modification, the TiO2 content was monitored by energy dispersive X-ray spectroscopy (EDS). Transmission electron microscopy (TEM) and FT-IR spectroscopy were applied for the particle characterization. The nanofluids contained 0.5, 1.0, and 1.5 volume% solid particles and zeta potential measurements were examined in terms of colloid stability. A rotation viscosimeter and thermal conductivity analyzer were used to study the nanofluids' rheological properties and thermal conductivity. These two parameters were investigated in the temperature range of 20 °C and 60 °C. Based on the results, the thin TiO2 coating significant impacted these parameters.

2.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808062

RESUMO

In this paper, we present a study on thermal conductivity and viscosity of nanofluids containing novel atomic layer deposition surface-modified carbon nanosphere (ALD-CNS) and carbon nanopowder (ALD-CNP) core-shell nanocomposites. The nanocomposites were produced by atomic layer deposition of amorphous TiO2. The nanostructures were characterised by scanning (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetry/differential thermal analysis (TG/DTA) and X-ray powder diffraction (XRD). High-concentration, stable nanofluids were prepared with 1.5, 1.0 and 0.5 vol% nanoparticle content. The thermal conductivity and viscosity of the nanofluids were measured, and their stability was evaluated with Zeta potential measurements. The ALD-CNS enhanced the thermal conductivity of the 1:5 ethanol:water mixture by 4.6% with a 1.5 vol% concentration, and the viscosity increased by 37.5%. The ALD-CNS increased the thermal conductivity of ethylene-glycol by 10.8, whereas the viscosity increased by 15.9%. The use of a surfactant was unnecessary due to the ALD-deposited TiO2 layer.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159644

RESUMO

A CFD model was performed with commercial software through the adoption of the finite volume method and a SIMPLE algorithm. SiO2-P25 particles were added to water/ethylene glycol as a base fluid. The result is considered a new hybrid nanofluid (HN) for investigating heat transfer (HT). The volume concentrations were 0.5, 1.0, and 1.5%. The Reynolds number was in the range of 5000-17,000. The heat flux (HF) was 7955 W/m2, and the wall temperature was 340.15 K. The numerical experiments were performed strictly following the rules that one should follow in HT experiments. This is important because many studies related to nanofluid HT overlook these details. The empirical correlations that contain the friction factor perform better with higher Reynolds numbers than the correlations based only on Reynolds and Prandtl numbers. When temperature differences are moderate, researchers may consider using constant properties to lower computational costs, as they may give results that are similar to temperature-dependent ones. Compared with previous research, our simulation results are in agreement with the experiments in real time.

4.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671055

RESUMO

A comparative research on stability, viscosity (µ), and thermal conductivity (k) of carbon nanosphere (CNS) and carbon nanopowder (CNP) nanofluids was performed. CNS was synthesized by the hydrothermal method, while CNP was provided by the manufacturer. Stable nanofluids at high concentrations 0.5, 1.0, and 1.5 vol% were prepared successfully. The properties of CNS and CNP nanoparticles were analyzed with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SBET), X-ray powder diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and energy dispersive X-ray analysis (EDX). The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol% concentration compared to the base fluid, while the CNS does not make the thermal conductivity of nanofluids (knf) significantly higher. The studied nanofluids were Newtonian. The relative µ of CNS and CNP nanofluids was 1.04 and 1.07 at 0.5 vol% concentration and 30 °C. These results can be explained by the different sizes and crystallinity of the used nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA