Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Org Lett ; 26(25): 5318-5322, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38888237

RESUMO

Herein we report the discovery of an azabicyclo[2.1.1]hexane piperazinium methanesulfonate salt from an unexpected rearrangement reaction in the preparation of ligand-directed degraders (LDDs). This bench-stable compound was found to be a versatile electrophile in a ring-opening reaction with various types of nucleophiles. Its utility as a versatile medicinal chemistry building block is further demonstrated in the synthesis of an LDD compound targeting degradation of the androgen receptor.


Assuntos
Compostos Azabicíclicos , Piperazinas , Estrutura Molecular , Piperazinas/química , Piperazinas/síntese química , Compostos Azabicíclicos/química , Compostos Azabicíclicos/síntese química , Química Farmacêutica , Ligantes , Sais/química
3.
J Med Chem ; 66(23): 16388-16409, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991844

RESUMO

Modulating the chemical composition of cereblon (CRBN) binders is a critical step in the optimization process of protein degraders that seek to hijack the function of this E3 ligase. Small structural changes can have profound impacts on the overall profile of these compounds, including depth of on-target degradation, neosubstrate degradation selectivity, as well as other drug-like properties. Herein, we report the design and synthesis of a series of novel CRBN binding moieties. These CRBN binders were evaluated for CRBN binding and degradation of common neosubstrates Aiolos and GSPT1. A selection of these binders was employed for an exploratory matrix of heterobifunctional molecules, targeting CRBN-mediated degradation of the androgen receptor.


Assuntos
Peptídeo Hidrolases , Ubiquitina-Proteína Ligases , Proteólise , Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Nat Commun ; 8(1): 92, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733648

RESUMO

Synthetic polypeptides have received increasing attention due to their ability to form higher ordered structures similar to proteins. The control over their secondary structures, which enables dynamic conformational changes, is primarily accomplished by tuning the side-chain hydrophobic or ionic interactions. Herein we report a strategy to modulate the conformation of polypeptides utilizing donor-acceptor interactions emanating from side-chain H-bonding ligands. Specifically, 1,2,3-triazole groups, when incorporated onto polypeptide side-chains, serve as both H-bond donors and acceptors at neutral pH and disrupt the α-helical conformation. When protonated, the resulting 1,2,3-triazolium ions lose the ability to act as H-bond acceptors, and the polypeptides regain their α-helical structure. The conformational change of triazole polypeptides in response to the donor-acceptor pattern was conclusively demonstrated using both experimental-based and simulation-based methods. We further showed the utility of this transition by designing smart, cell-penetrating polymers that undergo acid-activated endosomal escape in living cells.Hydrogen bonding plays a major role in determining the tridimensional structure of biopolymers. Here, the authors show that control over a polypeptide conformation can be achieved by altering the donor-acceptor properties of side-chain triazole units via protonation-deprotonation.


Assuntos
Ligação de Hidrogênio , Ligantes , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína , Animais , Biopolímeros , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Confocal , Modelos Moleculares , Células NIH 3T3 , Conformação Proteica , Análise Espectral , Triazóis/metabolismo
5.
Soft Matter ; 11(20): 4091-8, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25939493

RESUMO

Multilamellar membranes are important building blocks for constructing self-assembled structures with improved barrier properties, such as multilamellar lipid vesicles. Polymeric vesicles (polymersomes) have attracted growing interest, but multilamellar polymersomes are much less explored. Here, we report the formation of polypeptide vesicles with unprecedented densely packed multilayer membrane structures with poly(ethylene glycol)-block-poly(γ-(4,5-dimethoxy-2-nitrobenzyl)-l-glutamate) (PEG-b-PL), an amphiphilic diblock rod-coil copolymer containing a short PEG block and a short hydrophobic rod-like polypeptide segment. The polypeptide rods undergo smectic ordering with PEG buried between the hydrophobic polypeptide layers. The size of both blocks and the rigidity of the hydrophobic polypeptide block are critical in determining the membrane structures. Increase of the PEG length in PEG-b-PL results in the formation of bilayer sheets, while using random-coil polypeptide block leads to the formation of large compound micelles. UV treatment causes ester bond cleavage of the polypeptide side chain, which induces helix-to-coil transition, change of copolymer amphiphilicity, and eventual disassembly of vesicles. These polypeptide vesicles with unique membrane structures provide a new insight into self-assembly structure control by precisely tuning the composition and conformation of polymeric amphiphiles.

6.
Biomacromolecules ; 15(4): 1491-7, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24635536

RESUMO

Polypeptides bearing quaternary phosphonium side chains were synthesized via controlled ring-opening polymerization of chlorine-functionalized amino acid N-carboxyanhydride monomers followed by one-step nucleophilic substitution reaction with triethylphosphine. The conformation of the resulting polypeptides can be controlled by modulating the side-chain length and α-carbon stereochemistry. The phosphonium-based poly(l-glutamate) derivatives with 11 σ-bond backbone-to-charge distance adopt stable α-helical conformation against pH and ionic strength changes. These helical, quaternary phosphonium-bearing polypeptides exhibit higher cell-penetrating capability than their racemic and random-coiled analogues. They enter cells mainly via an energy-independent, nonendocytic cell membrane transduction mechanism and exhibit low cytotoxicity, substantiating their potential use as a safe and effective cell-penetrating agent.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Ácidos Fosforosos/química , Membrana Celular/efeitos dos fármacos , Técnicas de Química Sintética , Células HeLa/efeitos dos fármacos , Humanos , Peptídeos/síntese química , Ácido Poliglutâmico/química , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA