Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 66: 101633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356832

RESUMO

OBJECTIVE: Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS: BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS: BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS: BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptores de Glucagon , Animais , Humanos , Camundongos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Oxintomodulina/farmacologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Receptores de Glucagon/metabolismo
2.
Neuropharmacology ; 213: 109078, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561791

RESUMO

Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy.


Assuntos
Motivação , Roedores , Animais , Dopamina/metabolismo , Gastos em Saúde , Camundongos , Proteínas do Tecido Nervoso/farmacologia , Ratos , Receptores Acoplados a Proteínas G , Recompensa , Roedores/metabolismo
3.
Eur J Pharmacol ; 908: 174352, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34274340

RESUMO

The anorectic action of the pancreatic hormone amylin is mainly mediated through the area postrema (AP). Amylin activates AP neurons using a heterodimeric receptor (AMY) composed of the calcitonin receptor (CTR) and the receptor activity modifying protein (RAMP 1, 2 or 3). The aim of the following experiments is to test the effects of the long acting amylin analogue (LAAMA) in RAMP1/3 knock-out (KO) male mice and in neuronal CTR KO Nestin-CreCTR male mice. In vitro, LAAMA exerted an equipotent effect on CTR and AMYs that was maintained across species. Following one week of 45% high fat diet, WT, RAMP1/3 KO and Nestin-CreCTR mice were injected daily for one week with vehicle or LAAMA. LAAMA decreased body weight gain in WT and in RAMP1/3 KO mice suggesting that RAMP1/3 are not necessary for LAAMA-induced effects. However, LAAMA was not able to produce any body lowering and anorectic effects in Nestin-CreCTR mice. This was accompanied by the absence of any c-Fos signal in the AP opposite to WT control mice. Together, these results suggest that LAAMA's effects are mainly mediated through CTR rather than specific AMY. The study of LAAMA or any amylin receptor agonist in different receptor KO mouse models helps disentangle the underlying mechanisms used by these molecules.


Assuntos
Receptores da Calcitonina , Animais , Área Postrema , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Proteínas Proto-Oncogênicas c-fos
4.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R250-R259, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259025

RESUMO

The peptide hormone amylin reduces food intake and body weight and is an attractive candidate target for novel pharmacotherapies to treat obesity. However, the short half-life of native amylin and amylin analogs like pramlintide limits these compounds' potential utility in promoting sustained negative energy balance. Here, we evaluate the ability of the novel long-acting amylin/calcitonin receptor agonist ZP5461 to reduce feeding and body weight in rats, and also test the role of calcitonin receptors (CTRs) in the dorsal vagal complex (DVC) of the hindbrain in the energy balance effects of chronic ZP5461 administration. Acute dose-response studies indicate that systemic ZP5461 (0.5-3 nmol/kg) robustly suppresses energy intake and body weight gain in chow- and high-fat diet (HFD)-fed rats. When HFD-fed rats received chronic systemic administration of ZP5461 (1-2 nmol/kg), the compound initially produced reductions in energy intake and weight gain but failed to produce sustained suppression of intake and body weight. Using virally mediated knockdown of DVC CTRs, the ability of chronic systemic ZP5461 to promote early reductions in intake and body weight gain was determined to be mediated in part by activation of DVC CTRs, implicating the DVC as a central site of action for ZP5461. Future studies should address other dosing regimens of ZP5461 to determine whether an alternative dose/frequency of administration would produce more sustained body weight suppression.


Assuntos
Agonistas dos Receptores da Amilina/farmacologia , Depressores do Apetite/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Receptores da Calcitonina/agonistas , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/efeitos dos fármacos , Rombencéfalo/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Ingestão de Energia/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Rombencéfalo/metabolismo , Transdução de Sinais , Fatores de Tempo , Nervo Vago/metabolismo
5.
Sci Rep ; 11(1): 8060, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850212

RESUMO

Dipeptidyl peptidase IV (DPP-IV) inhibitors improve glycemic control by prolonging the action of glucagon-like peptide-1 (GLP-1). In contrast to GLP-1 analogues, DPP-IV inhibitors are weight-neutral. DPP-IV cleavage of PYY and NPY gives rise to PYY3-36 and NPY3-36 which exert potent anorectic action by stimulating Y2 receptor (Y2R) function. This invites the possibility that DPP-IV inhibitors could be weight-neutral by preventing conversion of PYY/NPY to Y2R-selective peptide agonists. We therefore investigated whether co-administration of an Y2R-selective agonist could unmask potential weight lowering effects of the DDP-IV inhibitor linagliptin. Male diet-induced obese (DIO) mice received once daily subcutaneous treatment with linagliptin (3 mg/kg), a Y2R-selective PYY3-36 analogue (3 or 30 nmol/kg) or combination therapy for 14 days. While linagliptin promoted marginal weight loss without influencing food intake, the PYY3-36 analogue induced significant weight loss and transient suppression of food intake. Both compounds significantly improved oral glucose tolerance. Because combination treatment did not further improve weight loss and glucose tolerance in DIO mice, this suggests that potential negative modulatory effects of DPP-IV inhibitors on endogenous Y2R peptide agonist activity is likely insufficient to influence weight homeostasis. Weight-neutrality of DPP-IV inhibitors may therefore not be explained by counter-regulatory effects on PYY/NPY responses.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Linagliptina/farmacologia , Receptores de Neuropeptídeo Y , Animais , Masculino , Camundongos , Camundongos Obesos
6.
Adipocyte ; 7(4): 277-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161013

RESUMO

Despite increased knowledge of nutrient intake regulation and energy homeostasis, treatment options for obesity remain limited. Food reward consists of two branches: gustatory and post-ingestive nutritive information. Drosophila lacking dSLC5A11 (sodium/glucose cotransporter 6-SGLT6) prefer L-glucose over D-glucose independently of their state of satiety. Human SGLT6 is an active transporter of myo-inositol and D-glucose. We investigated expression of SGLT6 in human tissue and found a significant expression in the small intestine and brain. The preference between a metabolizable and a non-metabolizable sugar was tested in 3 mouse models with a selective and potent SGLT6 inhibitor. No influence on sugar preference was seen with SGLT6 inhibition. These studies suggest that SGLT6 does not play a significant role in nutrient sensing in mammals.


Assuntos
Fármacos Antiobesidade/farmacologia , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/uso terapêutico , Células CACO-2 , Preferências Alimentares/efeitos dos fármacos , Glucose/metabolismo , Células HEK293 , Humanos , Inositol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular
7.
J Pharmacokinet Pharmacodyn ; 45(2): 215-233, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29170989

RESUMO

The inhibitory effect of anti-obesity drugs on energy intake (EI) is counter-acted by feedback regulation of the appetite control circuit leading to drug tolerance. This complicates the design and interpretation of EI studies in rodents that are used for anti-obesity drug development. Here, we investigated a synthetic long-acting analogue of the appetite-suppressing peptide hormone amylin (LAMY) in lean and diet-induced obese (DIO) rats. EI and body weight (BW) were measured daily and LAMY concentrations in plasma were assessed using defined time points following subcutaneous administration of the LAMY at different dosing regimens. Overall, 6 pharmacodynamic (PD) studies including a total of 173 rats were considered in this evaluation. Treatment caused a dose-dependent reduction in EI and BW, although multiple dosing indicated the development of tolerance over time. This behavior could be adequately described by a population model including homeostatic feedback of EI and a turnover model describing the relationship between EI and BW. The model was evaluated by testing its ability to predict BW loss in a toxicology study and was utilized to improve the understanding of dosing regimens for obesity therapy. As such, the model proved to be a valuable tool for the design and interpretation of rodent studies used in anti-obesity drug development.


Assuntos
Peso Corporal/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacocinética , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica/métodos , Feminino , Masculino , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA