Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(19): 8169-8181, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690750

RESUMO

Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.


Assuntos
Vibrio vulnificus , Vibrio vulnificus/genética , Incêndios Florestais , Expressão Gênica
2.
Sci Rep ; 14(1): 6716, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509345

RESUMO

Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C-S-H) and AFm ettringite phases. Biogenic CaCO3 and C-S-H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics.


Assuntos
Saccharum , Silicatos , Compostos de Cálcio , Cimentos Ósseos , Bactérias , Água
3.
Sci Total Environ ; 905: 167176, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730026

RESUMO

Single particle-inductively coupled plasma-time of flight-mass spectrometers (SP-ICP-TOF-MS) generates large datasets of the multi-elemental composition of nanoparticles. However, extracting useful information from such datasets is challenging. Hierarchical clustering (HC) has been successfully applied to extract elemental fingerprints from multi-element nanoparticle data obtained by SP-ICP-TOF-MS. However, many other clustering approaches can be applied to analyze SP-ICP-TOF-MS data that have not yet been evaluated. This study fills this knowledge gap by comparing the performance of three clustering approaches: HC, spectral clustering, and t-distributed Stochastic Neighbor Embedding coupled with Density-Based Spatial Clustering of Applications with Noise (tSNE-DBSCAN) for analyzing SP-ICP-TOF-MS data. The performance of these clustering techniques was evaluated by comparing the size of the extracted clusters and the similarity of the elemental composition of nanoparticles within each cluster. Hierarchical clustering often failed to achieve an optimal clustering solution for SP-ICP-TOF-MS data because HC is sensitive to the presence of outliers. Spectral clustering and tSNE-DBSCAN extracted clusters that were not identified by HC. This is because spectral clustering, a method developed based on graph theory, reveals the global and local structure in the data. tSNE reduces and maps the data into a lower-dimensional space, enabling clustering algorithms such as DBSCAN to identify subclusters with subtle differences in their elemental composition. However, tSNE-DBSCAN can lead to unsatisfactory clustering solutions because tuning the perplexity hyperparameter of tSNE is a difficult and a time-consuming task, and the relative distance between datapoints is not maintained. Although the three clustering approaches successfully extract useful information from SP-ICP-TOF-MS data, spectral clustering outperforms HC and tSNE-DBSCAN by generating clusters of a large number of nanoparticles with similar elemental compositions.

4.
Nanoscale ; 15(26): 11268-11279, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37345980

RESUMO

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multi-element determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e.194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics.

5.
Molecules ; 28(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241741

RESUMO

Nanotechnology is a crucial technology for the development of science and technology [...].

6.
J Hazard Mater ; 445: 130608, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056018

RESUMO

In addition to the combustion of vegetation, fires at the wildland-urban interface (WUI) burn structural materials, including chromated copper arsenate (CCA)-treated wood. This study identifies, quantifies, and characterizes Cr-, Cu-, and As-bearing incidental nanomaterials (INMs) in WUI fire ashes collected from three residential structures suspected to have originated from the combustion of CCA-treated wood. The total elemental concentrations were determined by inductively coupled plasma-time of flight-mass spectrometry (ICP-TOF-MS) following acid digestion. The crystalline phases were determined using transmission electron microscopy (TEM), specifically using electron diffraction and high-resolution imaging. The multi-element single particle composition and size distribution were determined by single particle (SP)-ICP-TOF-MS coupled with agglomerative hierarchical clustering analysis. Chromium, Cu, and As are the dominant elements in the ashes and together account for 93%, 83%, and 24% of the total mass of measured elements in the ash samples. Chromium, Cu, and As phases, analyzed by TEM, most closely match CrO3, CrO2, eskolaite (Cr2O3), CuCrO2, CuCr2O4, CrAs2O6, As2O5, AsO2, claudetite (As2O3, monoclinic), or arsenolite (As2O3, cubic), although a bona fide phase identification for each particle was not always possible. These phases occur predominantly as heteroaggregates. Multi-element single particle analyses demonstrate that Cr occurs as a pure phase (i.e., Cr oxides) as well as in association with other elements (e.g., Cu and As); Cu occurs predominantly in association with Cr and As; and As occurs as As oxides and in association with Cu and Cr. Several Cr, Cu, and As clusters were identified and the molar ratios of Cr/Cu and Cr/As within these clusters are consistent with the crystalline phases identified by TEM as well as their heteroaggregates. These results indicate that WUI fires can lead to significant release of CCA constituents and their combustion-transformed by-products into the surrounding environment. This study also provides a method to identify and track CCA constituents in environmental systems based on multi-element analysis using SP-ICP-TOF-MS.

7.
J Hazard Mater ; 443(Pt B): 130311, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368066

RESUMO

Although metal and metalloid concentrations in wildfire ashes have been documented, the nature and concentrations of incidental nanomaterials (INMs) in wildland-urban interface (WUI) fire ashes have received considerably less attention. In this study, the total metal and metalloid concentrations of 57 vegetation, structural, and vehicle ashes and underlying soils collected at the WUI following the 2020 fire season in northern California - North Complex Fire and LNU Lightning Complex Fire - were determined using inductively coupled plasma-time of flight-mass spectrometry after microwave-assisted acid digestion. The concentrations of Ti, Zn, Cu, Ni, Pb, Sn, Sb, Co, Bi, Cr, Ba, As, Rb, and W are generally higher in structural/vehicle-derived ashes than in vegetation-derived ashes and soils. The concentrations of Ca, Sr, Rb, and Ag increased with increased combustion completeness (e.g., black ash < gray ash < white ash), whereas those of C, N, Zn, Pb, and In decreased with increased combustion completeness. The concentration of anthropogenic Ti - determined by mass balance calculations and shifts in Ti/Nb above the natural background ratios - was highest in vehicle ash (median: 30.8 g kg-1, range: 4.5-41.0 g kg-1) followed by structural ash (median: 5.5 g kg-1, range: of 0-77.4 g kg-1). Various types of carbonaceous INM (e.g., amorphous carbon, turbostratic-like carbon, and carbon associated with zinc oxides) and metal-bearing INMs (e.g., Ti, Cu, Fe, Zn, Mn, Pb, and Cr) with sizes between few nanometers to few hundreds of nanometers were evidenced in ashes using transmission electron microscopy, including energy dispersive X-ray spectroscopy. Overall, this study demonstrates the abundance of a variety of metals and metalloids in the form of INMs in WUI fire ashes. This study also highlights the need for further research into the formation, transformation, reactivity, fate, and effects of INMs during and following fires at the WUI.


Assuntos
Metaloides , Nanoestruturas , Incêndios Florestais , Chumbo , Solo/química , Carbono
8.
Environ Sci Nano ; 11: 373-388, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38779611

RESUMO

Metals and metalloids are widely used in producing plastic materials as fillers and pigments, which can be used to track the environmental fate of real-life nanoplastics in environmental and biological systems. Therefore, this study investigated the metal and metalloids concentrations and fingerprint in real-life model nanoplastics generated from new plastic products (NPP) and from environmentally aged ocean plastic fragments (NPO) using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-TOF-MS) and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX). The new plastic products include polypropylene straws (PPS), polyethylene terephthalate bottles (PETEB), white low-density polyethylene bags (LDPEB), and polystyrene foam shipping material (PSF). All real-life model nanoplastics contained metal and metalloids, including Si, Al, Sr, Ti, Fe, Ba, Cu, Pb, Zn, Cd, and Cr, and were depleted in rare earth elements. Nanoplastics generated from the white LDPEB were rich in Ti-bearing particles, whereas those generated from PSF were rich in Cr, Ti, and Pb. The Ti/Fe in the LDPEB nanoplastics and the Cr/Fe in the PSF nanoplastics were higher than the corresponding ratios in natural soil nanoparticles (NNPs). The Si/Al ratio in the PSF nanoplastics was higher than in the NNPs, possibly due to silica-based fillers. The elemental ratio of Si/Al, Fe/Cr, and Fe/Ni in the nanoplastics derived from ocean plastic fragments was intermediate between the nanoplastics derived from real-life plastic products and NNPs, indicating a combined contribution from pigments and fillers used in plastics and from natural sources. This study provides a method to track real-life nanoplastics in controlled laboratory studies based on nanoplastic elemental fingerprints. It expands the realm of nanoplastics that can be followed based on their metallic signatures to all kinds of nanoplastics. Additionally, this study illustrates the importance of nanoplastics as a source of metals and metal-containing nanoparticles in the environment.

9.
Nat Nanotechnol ; 17(12): 1342-1351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443601

RESUMO

Artificial ocean fertilization (AOF) aims to safely stimulate phytoplankton growth in the ocean and enhance carbon sequestration. AOF carbon sequestration efficiency appears lower than natural ocean fertilization processes due mainly to the low bioavailability of added nutrients, along with low export rates of AOF-produced biomass to the deep ocean. Here we explore the potential application of engineered nanoparticles (ENPs) to overcome these issues. Data from 123 studies show that some ENPs may enhance phytoplankton growth at concentrations below those likely to be toxic in marine ecosystems. ENPs may also increase bloom lifetime, boost phytoplankton aggregation and carbon export, and address secondary limiting factors in AOF. Life-cycle assessment and cost analyses suggest that net CO2 capture is possible for iron, SiO2 and Al2O3 ENPs with costs of 2-5 times that of conventional AOF, whereas boosting AOF efficiency by ENPs should substantially enhance net CO2 capture and reduce these costs. Therefore, ENP-based AOF can be an important component of the mitigation strategy to limit global warming.


Assuntos
Dióxido de Carbono , Nanopartículas , Ecossistema , Dióxido de Silício , Fitoplâncton , Oceanos e Mares , Fertilização
10.
Chemosphere ; 297: 134091, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218785

RESUMO

Titanium dioxide (TiO2) is widely used in engineered particles including engineered nanomaterial (ENM) and pigments, yet its occurrence, concentrations, temporal variability, and fate in natural environmental systems are poorly understood. For three years, we monitored TiO2 concentrations in a rural river basin (Edisto River, < 1% urban land cover) in South Carolina, United States. The total concentrations of Ti, Nb, Al, Fe, Ce, and La in the Edisto River trended higher during spring/summer compared to autumn/winter. Upward trending Ti/Nb ratio in the spring/summer compared to near-background autumn/winter ratios of 255.7 ± 8.9 indicated agricultural preparation and growing-season-related increases in TiO2 engineered particles. In contrast, downward trending of the Ti/Al and Ti/Fe ratios in the spring and summer compared to the near-background autumn/winter ratios of 0.05 indicated greater mobilization of Fe and Al, relative to Ti during spring/summer. Surface-water concentrations of TiO2 engineered particles varied between 0 and 128.7 ± 3.9 µg TiO2 L-1. Increases in TiO2 concentrations over the spring/summer were associated with increases in phosphorus, orthophosphate, nitrate, ammonia, anthropogenic gadolinium, water temperature, suspended sediments, organic carbon, and alkalinity, and with decreases in dissolved oxygen. The association between these contaminants together with the timing of the increases in their concentrations is consistent with diffuse wastewater sources, such as reuse application overspray, biosolids fertilization, leaking sewers, or septic tanks, as the driver of instream concentrations; however, other diffuse sources cannot be ruled out. The findings of this study indicate spatially-distributed (non-point source) releases can result in high concentrations of TiO2 engineered particles, which may pose higher risks to rural stream aquatic ecosystems during the agricultural season. The results illustrate the importance of monitoring seasonal variations in engineered particles concentrations in surface waters for a more representative assessment of ecosystem risk.


Assuntos
Rios , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Estações do Ano , Titânio , Água , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 807(Pt 3): 151081, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678372

RESUMO

Titanium dioxide (TiO2) engineered particles are widely used in the urban environment as pigments in paints, and as active ingredients in photocatalytic coatings. Consequently, studies are necessary to quantify TiO2 engineered particle concentrations and their temporal variability in surface waters to gain better understanding about their abundance and environmental fate in order to minimize their potential environmental impacts. The objective of this study was to determine the temporal variability in the concentration of TiO2 engineered particles in the Broad River, Columbia, South Carolina, United States during dry and wet weather conditions and to examine the relationship between flow discharge, water quality indicators, and the concentration of TiO2 engineered particles. TiO2 engineered particle concentration in the Broad River water was determined by mass balance calculation using bulk titanium concentration and the increase in Ti/Nb ratio above the natural background ratio. The relative abundance of single metal and multi-metal Ti-bearing particles was determined by single particle-inductively coupled plasma-time of flight-mass spectrometer (SP-ICP-TOF-MS). Additionally, the elemental ratios of Ti/Nb, Ti/Al, and Ti/Fe within multi-metal Ti-bearing particles were determined at the single particle level. Discharge, bulk elemental concentrations (e.g., Ti, Al, Fe, and Nb), bulk elemental ratios (e.g., Ti/Al, Ti/Fe, and Ti/Nb), TiO2 engineered particle concentration, and turbidity displayed the same trend of rise and fall following storm events. Linear relationships were established between turbidity and TiO2 engineered particle concentrations in the Broad River for different flow regimes. However, no correlation was observed between TiO2 engineered particle concentrations and flow discharge, dissolved oxygen, pH, or ionic strength. The established correlations between turbidity and TiO2 engineered particle concentrations are important as they can be used to translate the continuously monitored turbidity to TiO2 concentrations.


Assuntos
Rios , Titânio , South Carolina , Tempo (Meteorologia)
12.
Sci Total Environ ; 806(Pt 1): 150477, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563904

RESUMO

Natural organic matter corona (NOM corona) is an interfacial area between nanomaterials (NMs) and the surrounding environment, which gives rise to NMs' unique surface identity. While the importance of the formation of natural organic matter (NOM) corona on engineered nanomaterials (NMs) to NM behavior, fate, and toxicity has been well-established, the understanding of how NOM molecular properties affect NOM corona composition remains elusive due to the complexity and heterogeneity of NOM. This is further complicated by the variation of NOMs from different origins. Here we use eight NOM isolates of different molecular composition and ultrahigh resolution Fourier-transform ion cyclotron resonance-mass spectrometry (ESI-FT-ICR-MS) to determine the molecular composition of platinum NM-NOM corona as a function of NOM composition and NM surface coating. We observed that the composition of PtNM-NOM corona varied with the composition of the original NOM. The percentage of NOM formulas that formed PVP-PtNM-NOM corona was higher than those formed citrate-PtNM-NOM corona, due to increased sorption of NOM formulas, in particular condensed hydrocarbons, to the PVP coating. The relative abundance of heteroatom formulas (CHON, CHOS, and CHOP) was higher in the PVP-PtNM-NOM corona than in citrate-PtNM-corona which was in turn higher than those in the original NOM isolate, indicating preferential partitioning of heteroatom-rich molecules to NM surfaces. The relative abundance of CHO, CHON, CHOS, CHOP and condensed hydrocarbons in PtNM-NOM corona increased with their increase in NOM isolates. Furthermore, PtNM-NOM corona is rich with compounds with high molecular weight. This study demonstrates that the composition and properties of PtNM-NOM corona depend on NOM molecular properties and PtNM surface coating. The results here provide evidence of molecular interactions between NOM and NMs, which are critical to understanding NM colloidal properties (e.g., surface charge and stability), interaction forces (e.g., van der Waals and hydrophobic), environmental behaviors (e.g., aggregation, dissolution, sulfidation, etc.), and biological effects (e.g., uptake, bioaccumulation, and toxicity).


Assuntos
Nanoestruturas , Platina , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas
13.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749192

RESUMO

Nanoparticles (NPs) can be produced via physical, chemical, or biological approaches. Yet, the impact of the synthesis approaches on the environmental fate and effects of NPs is poorly understood. Here, we synthesized AgNPs through chemical and biological approaches (cit-AgNPs and bio-AgNPs), characterized their properties, and toxicities relative to commercially available Ag nanopowder (np-AgNPs) to the clam Mercenaria mercenaria. The chemical synthesis is based on the reduction of ionic silver using sodium borohydride as a reducing agent and trisodium citrate as a capping agent. The biological synthesis is based on the reduction of ionic silver using biomolecules extracted from an atoxigenic strain of a filamentous fungus Aspergillus parasiticus. The properties of AgNPs were determined using UV-vis, dynamic light scattering, laser Doppler electrophoresis, (single particle)-inductively coupled plasma-mass spectroscopy, transmission electron microscopy, and asymmetric flow-field flow fractionation. Both chemical and biological synthesis approaches generated spherical AgNPs. The chemical synthesis produced AgNPs with narrower size distributions than those generated through biological synthesis. The polydispersity of bio-AgNPs decreased with increases in cell free extract (CFE):Ag ratios. The magnitude of the zeta potential of the cit-AgNPs was higher than those of bio-AgNPs. All AgNPs formed aggregates in the test media i.e., natural seawater. Based on the same total Ag concentrations, all AgNPs were less toxic than AgNO3. The toxicity of AgNPs toward the juvenile clam, Mercenaria mercenaria, decreased following the order np-AgNPs > cit-AgNPs > bio-AgNPs. Expressed as a function of dissolved Ag concentrations, the toxicity of Ag decreased following the order cit-AgNPs > bio-AgNPs > AgNO3 ~ np-AgNPs. Therefore, the toxicity of AgNP suspensions can be attributed to a combined effect of dissolved and particulate Ag forms. These results indicate that AgNP synthesis methods determine their environmental and biological behaviors and should be considered for a more comprehensive environmental risk assessment of AgNPs.


Assuntos
Bivalves , Nanopartículas Metálicas , Animais , Difusão Dinâmica da Luz , Nanopartículas Metálicas/toxicidade , Extratos Vegetais , Prata/toxicidade
14.
Environ Toxicol Chem ; 41(3): 726-738, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913522

RESUMO

Treatment wetlands utilize various physical and biological processes to reduce levels of organic contaminants, metals, bacteria, and suspended solids. Silver nanoparticles (AgNPs) are one type of contaminant that can enter treatment wetlands and impact the overall treatment efficacy. Grazing by filter-feeding zooplankton, such as Daphnia magna, is critical to treatment wetland functioning; but the effects of AgNPs on zooplankton are not fully understood, especially at environmentally relevant concentrations. We characterized the bioaccumulation kinetics of dissolved and nanoparticulate (citrate-coated) 109 Ag in D. magna exposed to environmentally relevant 109 Ag concentrations (i.e., 0.2-23 nmol L-1 Ag) using a stable isotope as a tracer of Ag. Both aqueous and nanoparticulate forms of 109 Ag were bioavailable to D. magna after exposure. Water chemistry affected 109 Ag influx from 109 AgNP but not from 109 AgNO3 . Silver retention was greater for citrate-coated 109 AgNP than dissolved 109 Ag, indicating a greater potential for bioaccumulation from nanoparticulate Ag. Feeding inhibition was observed at higher dietary 109 Ag concentrations, which could lead to reduced treatment wetland performance. Our results illustrate the importance of using environmentally relevant concentrations and media compositions when predicting Ag bioaccumulation and provide insight into potential effects on filter feeders critical to the function of treatment wetlands. Environ Toxicol Chem 2022;41:726-738. © 2021 SETAC.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Bioacumulação , Ácido Cítrico/farmacologia , Daphnia , Íons , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/toxicidade , Nitrato de Prata , Água , Poluentes Químicos da Água/toxicidade
15.
Sci Total Environ ; 792: 148426, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157530

RESUMO

Detection and quantification of engineered nanomaterials in environmental systems require precise knowledge of the elemental composition, association, and ratios in homologous natural nanomaterials (NNMs). Here, we characterized soil NNMs at the single particle level using single particle-inductively coupled plasma-time of flight-mass spectrometer (SP-ICP-TOF-MS) in order to identify the elemental purity, composition, associations, and ratios within NNMs. Elements naturally present as a major constituent in NNMs such as Ti, and Fe occurred predominantly as pure/single metals, whereas elements naturally present at trace levels in NNMs occurred predominantly as impure/multi-metal NNMs such as V, Nb, Pr, Nd, Sm, Eu, Gd, Tb, Er, Dy, Yb, Lu, Hf, Ta, Pb, Th, and U. Other elements occurred as a mixture of single metal and multi-metal NNMs such as Al, Si, Cr, Mn, Ni, Cu, Zn, Ba, La, Ce, W, and Bi. Thus, elemental purity can be used to differentiate ENMs vs. NNMs only for those elements that occur at trace level in NNMs. We also classified multi-metal NNM into clusters of similar elemental composition and determined their mean elemental composition. Six major clusters accounted for more than 95% of the detected multi-metal NNMs including Al-, Fe-, Ti-, Si-, Ce-, and Zr-rich particles' clusters. The elemental composition of these multi-metal NNM clusters is consistent with naturally occurring minerals. Titanium occurred as a major element (>70% of the total metal mass in NNMs) in Ti-rich cluster and as a minor (<25% of the total metal mass in NNMs) element in likely clay, titanomagnetite, and aluminum oxide phases. Two rare earth element (REE) clusters were identified, characteristic of light REEs and heavy REEs. The findings of this study provide a methodology and baseline information on the elemental composition, associations, and ratios of NNMs, which can be used to differentiate NNMs vs. ENMs in environmental systems.


Assuntos
Metais Terras Raras , Nanoestruturas , Oligoelementos , Análise por Conglomerados , Espectrometria de Massas , Metais , Oligoelementos/análise
16.
Environ Sci Technol ; 55(10): 6644-6654, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969690

RESUMO

Characterization of nanoparticles (NPs) in coal fly ashes (CFAs) is critical for better understanding the potential health-related risks resulting from coal combustion. Based on single-particle (SP)-inductively coupled plasma mass spectrometry (ICP-MS) coupled with transmission electron microscopy techniques, this study is the first to determine the concentrations and sizes of metal-containing NPs in low-rank coal-derived fly ashes. Despite only comprising a minor component of the studied CFAs by mass, NPs were the dominant fraction by particle number. Fe- and Ti-containing NPs were identified as the dominant NPs with their particle number concentration ranging from 2.5 × 107 to 2.5 × 108 particles/mg. In addition, the differences of Fe-/Ti-containing NPs in various CFAs were regulated by the coalification degree of feed coals and combustion conditions of all of the low-rank CFAs tested. In the cases where these NPs in CFAs become airborne and are inhaled, they can be taken up in pulmonary interstitial fluids. This study shows that in Gamble's solution (a lung fluid simulant), 51-87% of Fe and 63-89% of Ti (ratio of the mass of Fe-/Ti-containing NPs to the total mass of Fe/Ti) exist in the NP form and remain suspended in pulmonary fluid simulants. These NPs are bioavailable and may induce lung tissue damage.


Assuntos
Cinza de Carvão , Nanopartículas Metálicas , China , Carvão Mineral , Cinza de Carvão/análise , Humanos , Pulmão
17.
J Chromatogr A ; 1641: 461981, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33684778

RESUMO

Asymmetrical flow field-flow fractionation (AF4) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used to characterize metal containing particles. This study demonstrates the advantages of coupling AF4 with ICP-time-of-flight mass spectrometry (ICP-TOFMS) in standard and single particle modes to determine size distribution, elemental composition, and number concentration of composite particles. The coupled system was used to characterize two complex particle mixtures. The first mixture consisted of particles extracted from micro-alloyed steels with two size populations of different elemental composition. The second mixture consisted of particles extracted from soil spiked with various engineered nanoparticles (ENPs). The equivalent hydrodynamic sizes of individual micro-alloyed steel particles were up to 6 times larger than the sizes determined by single particle (sp)-ICP-TOFMS. The larger AF4 sizes were attributed to the presence of a surface coating, which is not reflected in the core size determined by sp-ICP-TOFMS. Two particle populations could not be separated by AF4 due to their broad size distributions but were resolved by sp-ICP-TOFMS using their unique elemental signatures. Multi-angle light scattering and ICP-TOFMS signals of soil suspensions increased with the spiked ENP concentrations. However, only after conducting full element screening and single particle fingerprinting by ICP-TOFMS could this increase be attributed to enhanced extraction efficiency of natural particles and the risk for false conclusions be eliminated. In this study, we describe how AF4 coupled to ICP-TOFMS can be applied to study complex samples of inorganic particles which contain organic compounds.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Espectrometria de Massas/métodos , Nanopartículas/química , Nitrilas/química , Tamanho da Partícula , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Solo/química , Análise Espectral , Titânio/química
18.
Environ Sci Technol ; 55(4): 2452-2461, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33529523

RESUMO

The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail Lymnaea stagnalis. Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to L. stagnalis. Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter. The effect of natural organic matter (NOM) composition on PtNP bioavailability was evaluated using six NOM samples at two nanoparticle sizes (20 and 95 nm). NOM suppressed the bioavailability of 95 nm PtNPs in all cases, and DOM reduced sulfur content exhibited a positive correlation with 95 nm PtNP bioavailability. The bioavailability of 20 nm PtNPs was only suppressed by NOM with a low reduced sulfur content. The physiological elimination of Pt accumulated after dissolved Pt(IV) exposure was slow and constant. In contrast, the elimination of Pt accumulated after PtNP exposures exhibited a triphasic pattern likely involving in vivo PtNP dissolution. This work highlights the importance of PtNP size and interfacial interactions with NOM on Pt bioavailability and suggests that in vivo PtNP transformations could yield unexpectedly higher adverse effects to organisms than dissolved exposure alone.


Assuntos
Nanopartículas Metálicas , Platina , Animais , Disponibilidade Biológica , Água Doce , Povidona
19.
Sci Total Environ ; 753: 142017, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32898809

RESUMO

The growing use of engineered particles (e.g., nanosized and pigment sized particles, 1 to 100 nm and 100 to 300 nm, respectively) in a variety of consumer products increases the likelihood of their release into the environment. Wastewater treatment plants (WWTPs) are important pathways of introduction of engineered particles to the aquatic systems. This study reports the concentrations, removal efficiencies, and particle size distributions of Ag and TiO2 engineered particles in five WWTPs in three states in the United States. The concentration of Ag engineered particles was quantified as the total Ag concentration, whereas the concentration of TiO2 engineered particles was quantified using mass-balance calculations and shifts in the elemental ratio of Ti/Nb above their natural background elemental ratio. Ratios of Ti/Nb in all WWTP influents, activated sludges, and effluents were 2-12 times higher (e.g., 519 to 3243) than the natural background Ti/Nb ratio (e.g., 267 ± 9), indicating that 49-92% of Ti originates from anthropogenic sources. The concentration of TiO2 engineered particles (in µg TiO2 L-1) in the influent, activated sludge, and effluent varied within the ranges of 70-670, 3570-6700, and 7-30, respectively. The concentration of Ag engineered particles (in µg Ag L-1) in the influent, activated sludge, and effluent varied within the ranges of 0.11-0.33, 1.45-1.65, and 0.01-0.04, respectively. The overall removal efficiency (e.g., effluent/influent concentrations) of TiO2 engineered particles (e.g., 90 to 96%) was higher than that for Ag engineered particles (e.g., 82 to 95%). Particles entering WWTPs are in the nanosized range for Ag (e.g., >99%) and a mixture of nanosized (e.g., 15 to 90%) and pigment sized particles (e.g., 10 to 85%) for TiO2. Nearly all Ag (>99%) and 55 to 100% of TiO2 particles discharged to surface water with WWTP effluent are within the nanosize range. This study provides evidence that TiO2 and Ag engineered nanomaterials enter aquatic systems with WWTP effluents, and that their concentrations are expected to increase with the increased applications of TiO2 and Ag engineered nanomaterials in consumer products.

20.
Chemosphere ; 263: 128261, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297205

RESUMO

Quantifying and characterizing engineered particles in environmental systems is key for assessing their risk but remains challenging and requires the distinction between natural and engineered particles. The objective of this study was to characterize and quantify the concentrations of titanium dioxide engineered particles in the Broad River, Columbia, South Carolina, United States during and following rainfall events. The elemental ratio distributions of Ti/Nb, Ti/Fe, and Ti/Al, determined on a single particle basis using inductively coupled plasma-time of flight-mass spectrometry (SP-ICP-TOF-MS), were similar between samples during the different rainfall events, indicating that naturally occurring particles had the same elemental ratios and origin. Therefore, the changes in the Ti/Nb ratios in the bulk water samples were attributed to the introduction of titanium dioxide engineered particles into the Broad River with urban runoff during and following rainfall events. The total concentrations of Ti, Fe, Al, Nb, Ce, and La in the Broad River followed the same trend of rise and fall as the discharge/runoff. The elemental ratios of Ti/Nb were higher (e.g., 330 to 565) than the average crustal values (e.g., 320) and the natural background elemental ratios in surface waters in Columbia, SC (e.g., 266.4 ± 8.9), suggesting contamination with titanium dioxide engineered particles. The concentration of titanium dioxide engineered particles were estimated by mass balance calculations using total titanium concentrations and increases in Ti/Nb ratios above the natural background ratios. The concentrations of titanium dioxide engineered particles in the Broad River varied between 20 and 140 µg TiO2 L-1 following rainfall events. The source of titanium dioxide was attributed to urban runoff due to the absence of sewage contamination as indicated by the low size of the gadolinium anomaly. The findings of this study demonstrate that urban runoff is a major source of titanium dioxide engineered particles to urban rivers, which results in episodic high concentrations of titanium dioxide engineered particles, which may pose environmental risks during and following rainfall events. This study also highlights the importance of determining the temporal variations in engineered particle concentrations in surface waters for a more comprehensive risk assessment of engineered particles.


Assuntos
Rios , Titânio , Tamanho da Partícula , Esgotos , South Carolina , Titânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA