Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
ACS Med Chem Lett ; 14(6): 794-801, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312846

RESUMO

New derivatives of aminoglycosides with a side chain 1,2-aminoalcohol at the 5" position of ring III were designed, synthesized, and biologically evaluated. The novel lead structure (compound 6), exhibiting substantially enhanced selectivity toward eukaryotic versus prokaryotic ribosome, high readthrough activity, and considerably lower toxicity than the previous lead compounds, was discovered. Balanced readthrough activity and toxicity of 6 were demonstrated in three different nonsense DNA-constructs underlying the genetic diseases, cystic fibrosis and Usher syndrome, and in two different cell lines, baby hamster kidney and human embryonic kidney cells. Molecular dynamics simulations within the A site of the 80S yeast ribosome demonstrated a remarkable kinetic stability of 6, which potentially determines its high readthrough activity.

2.
J Med Chem ; 65(20): 14049-14065, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36219830

RESUMO

A library of eight new fluoroquinolone-nuclease conjugates containing a guanidinoethyl or aminoethyl auxiliary pendant on the cyclen moiety was designed and synthesized to investigate their potential for overcoming the general issue of "metallodrug vulnerability" under physiological conditions. The Cu(II) and Co(III) complexes of the new designer compounds were synthesized, and their potential to operate a dynamic, intramolecular cap with DNase activity was explored. The lead Co(III)-cyclen-ciprofloxacin conjugate showed excellent in vitro hydrolytic DNase activity, which was retained in the presence of strong endogenous chelators and exhibited enhanced antibacterial activity relative to the metal-free ligand (in the absence of any adjuvants), thereby demonstrating a "proof of concept" in vitro and ex vivo, respectively, for the dynamic cap hypothesis. The lead conjugate nicked supercoiled plasmid DNA within the fluoroquinolone-gyrase-DNA ternary complex and thereby disabled the function of gyrase, a new mode of action not previously reported for any fluoroquinolone.


Assuntos
Ciclamos , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Ligantes , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Quelantes , Desoxirribonucleases
3.
ACS Infect Dis ; 7(3): 608-623, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33448785

RESUMO

A library of ciprofloxacin-nuclease conjugates was designed and synthesized to investigate their potential as catalytic antibiotics. The Cu(II) complexes of the new designer compounds (i) showed excellent in vitro hydrolytic and oxidative DNase activity, (ii) showed good antibacterial activity against both Gram-negative and Gram-positive bacteria, and (iii) proved to be highly potent bacterial DNA gyrase inhibitors via a mechanism that involves stabilization of the fluoroquinolone-topoisomerase-DNA ternary complex. Furthermore, the Cu(II) complexes of two of the new designer compounds were shown to fragment supercoiled plasmid DNA into linear DNA in the presence of DNA gyrase, demonstrating a "proof of concept" in vitro. These ciprofloxacin-nuclease conjugates can therefore serve as models with which to develop next-generation, in vivo functioning catalytic antimicrobials.


Assuntos
Antibacterianos , Fluoroquinolonas , Antibacterianos/farmacologia , DNA , DNA Girase , Fluoroquinolonas/farmacologia , Inibidores da Topoisomerase II/farmacologia
4.
J Biol Chem ; 295(31): 10766-10780, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493770

RESUMO

Strains of the Gram-positive, thermophilic bacterium Geobacillus stearothermophilus possess elaborate systems for the utilization of hemicellulolytic polysaccharides, including xylan, arabinan, and galactan. These systems have been studied extensively in strains T-1 and T-6, representing microbial models for the utilization of soil polysaccharides, and many of their components have been characterized both biochemically and structurally. Here, we characterized routes by which G. stearothermophilus utilizes mono- and disaccharides such as galactose, cellobiose, lactose, and galactosyl-glycerol. The G. stearothermophilus genome encodes a phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) for cellobiose. We found that the cellobiose-PTS system is induced by cellobiose and characterized the corresponding GH1 6-phospho-ß-glucosidase, Cel1A. The bacterium also possesses two transport systems for galactose, a galactose-PTS system and an ABC galactose transporter. The ABC galactose transport system is regulated by a three-component sensing system. We observed that both systems, the sensor and the transporter, utilize galactose-binding proteins that also bind glucose with the same affinity. We hypothesize that this allows the cell to control the flux of galactose into the cell in the presence of glucose. Unexpectedly, we discovered that G. stearothermophilus T-1 can also utilize lactose and galactosyl-glycerol via the cellobiose-PTS system together with a bifunctional 6-phospho-ß-gal/glucosidase, Gan1D. Growth curves of strain T-1 growing in the presence of cellobiose, with either lactose or galactosyl-glycerol, revealed initially logarithmic growth on cellobiose and then linear growth supported by the additional sugars. We conclude that Gan1D allows the cell to utilize residual galactose-containing disaccharides, taking advantage of the promiscuity of the cellobiose-PTS system.


Assuntos
Proteínas de Bactérias/metabolismo , Celobiose/biossíntese , Geobacillus stearothermophilus/metabolismo , beta-Galactosidase/metabolismo , Proteínas de Bactérias/genética , Celobiose/genética , Geobacillus stearothermophilus/genética , beta-Galactosidase/genética
5.
Chembiochem ; 20(2): 247-259, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30474295

RESUMO

The emergence of multidrug-resistant pathogens that are resistant to the majority of currently available antibiotics is a significant clinical problem. The development of new antibacterial agents and novel approaches is therefore extremely important. We set out to explore the potential of catalytic antibiotics as a new paradigm in antibiotics research. Herein, we describe our pilot study on the design, synthesis, and biological testing of a series of new derivatives of the natural aminoglycoside antibiotic neomycin B for their potential action as catalytic antibiotics. The new derivatives showed significant antibacterial activity against wild-type bacteria and were especially potent against resistant and pathogenic strains including Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Selected compounds displayed RNase activity even though the activity was not as high and specific as we would have expected. On the basis of the observed chemical and biochemical data, along with the comparative molecular dynamics simulations of the prokaryotic rRNA decoding site, we postulate that the rational design of catalytic antibiotics should involve not only their structure but also a comprehensive analysis of the rRNA A-site dynamics.


Assuntos
Antibacterianos/farmacologia , Framicetina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , RNA Ribossômico/química , Antibacterianos/síntese química , Antibacterianos/química , Configuração de Carboidratos , Catálise , Desenho de Fármacos , Framicetina/síntese química , Framicetina/química , Simulação de Dinâmica Molecular
6.
Medchemcomm ; 9(3): 503-508, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108940

RESUMO

New derivatives of aminoglycosides containing 6'-carboxylic acid or 6'-amide on their ring I were designed, synthesized and their ability to readthrough nonsense mutations was examined in vitro, along with the protein translation inhibition in prokaryotic and eukaryotic systems. The observed structure-activity relationships, along with the comparative molecular dynamics simulations within the eukaryotic rRNA decoding site, showed high sensitivity of 6'-position to substitution, indicating that the rational design of potent stop-codon read-through inducers requires consideration of not only the structure and energetics of the drug-RNA interaction but also the dynamics associated with that interaction.

7.
Bioorg Med Chem ; 25(11): 2917-2925, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28343755

RESUMO

To address the growing problem of antibiotic resistance, a set of 12 hybrid compounds that covalently link fluoroquinolone (ciprofloxacin) and aminoglycoside (kanamycin A) antibiotics were synthesized, and their activity was determined against both Gram-negative and Gram-positive bacteria, including resistant strains. The hybrids were antagonistic relative to the ciprofloxacin, but were substantially more potent than the parent kanamycin against Gram-negative bacteria, and overcame most dominant resistance mechanisms to aminoglycosides. Selected hybrids were 42-640 fold poorer inhibitors of bacterial protein synthesis than the parent kanamycin, while they displayed similar inhibitory activity to that of ciprofloxacin against DNA gyrase and topoisomerase IV enzymes. The hybrids showed significant delay of resistance development in both E. coli and B. subtilis in comparison to that of component drugs alone or their 1:1 mixture. More generally, the data suggest that an antagonistic combination of aminoglycoside-fluoroquinolone hybrids can lead to new compounds that slowdown/prevent the emergence of resistance.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Canamicina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ciprofloxacina/química , Relação Dose-Resposta a Droga , Canamicina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
8.
RNA Biol ; 14(3): 378-388, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145797

RESUMO

Nonsense mutations, generating premature termination codons (PTCs), account for 10% to 30% of the mutations in tumor suppressor genes. Nonsense translational suppression, induced by small molecules including gentamicin and G418, has been suggested as a potential therapy to counteract the deleterious effects of nonsense mutations in several genetic diseases and cancers. We describe here that NB124, a synthetic aminoglycoside derivative recently developed especially for PTC suppression, strongly induces apoptosis in human tumor cells by promoting high level of PTC readthrough. Using a reporter system, we showed that NB124 suppressed several of the PTCs encountered in tumor suppressor genes, such as the p53 and APC genes. We also showed that NB124 counteracted p53 mRNA degradation by nonsense-mediated decay (NMD). Both PTC suppression and mRNA stabilization contributed to the production of a full-length p53 protein capable of activating p53-dependent genes, thereby specifically promoting high levels of apoptosis. This new-generation aminoglycoside thus outperforms the only clinically available readthrough inducer (gentamicin). These results have important implications for the development of personalised treatments of PTC-dependent diseases and for the development of new drugs modifying translation fidelity.


Assuntos
Aminoglicosídeos/farmacologia , Códon sem Sentido , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Biossíntese de Proteínas/efeitos dos fármacos , Apoptose/genética , Genes APC , Humanos , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Proteína Oncogênica p21(ras)/metabolismo , Ligação Proteica , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
ACS Med Chem Lett ; 7(4): 418-23, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27096052

RESUMO

New pseudotrisaccharide derivatives of aminoglycosides that exploit additional interaction on the shallow groove face of the decoding-site rRNA of eukaryotic ribosome were designed, synthesized and biologically evaluated. Novel lead structures (6 and 7 with an additional 7'-OH), exhibiting enhanced specificity to eukaryotic cytoplasmic ribosome, and superior nonsense mutation suppression activity than those of gentamicin, were discovered. The comparative benefit of new leads was demonstrated in four different nonsense DNA-constructs underling the genetic diseases cystic fibrosis, Usher syndrome, and Hurler syndrome.

10.
Proc Natl Acad Sci U S A ; 113(13): 3645-50, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976589

RESUMO

Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.


Assuntos
Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Ácido gama-Aminobutírico/fisiologia , Proteína Relacionada com Agouti/deficiência , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/fisiologia , Animais , Engenharia Genética , Glutamato Descarboxilase/deficiência , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/fisiologia , Hipotálamo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
11.
BioDrugs ; 30(2): 49-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886021

RESUMO

In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Doenças Genéticas Inatas/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Doenças Genéticas Inatas/genética , Terapia Genética/métodos , Genótipo , Humanos , RNA Mensageiro/genética
12.
Mol Biol Evol ; 33(2): 492-500, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26538141

RESUMO

Hybrid drugs are a promising strategy to address the growing problem of drug resistance, but the mechanism by which they modulate the evolution of resistance is poorly understood. Integrating high-throughput resistance measurements and genomic sequencing, we compared Escherichia coli populations evolved in a hybrid antibiotic that links ciprofloxacin and neomycin B with populations evolved in combinations of the component drugs. We find that populations evolved in the hybrid gain less resistance than those evolved in an equimolar mixture of the hybrid's components, in part because the hybrid evades resistance mediated by the multiple antibiotic resistance (mar) operon. Furthermore, we find that the ciprofloxacin moiety of the hybrid inhibits bacterial growth whereas the neomycin B moiety diminishes the effectiveness of mar activation. More generally, comparing the phenotypic and genotypic paths to resistance across different drug treatments can pinpoint unique properties of new compounds that limit the emergence of resistance.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Evolução Biológica , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genótipo , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Mutação , Fenótipo
13.
Nucleic Acids Res ; 43(17): 8601-13, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26264664

RESUMO

Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)-the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and has yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We also evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3: , as a prospective therapeutic candidate for the treatment of VL.


Assuntos
Antiprotozoários/química , Leishmania/efeitos dos fármacos , Paromomicina/química , Inibidores da Síntese de Proteínas/química , Ribossomos/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Cobaias , Humanos , Leishmania/crescimento & desenvolvimento , Macrófagos/parasitologia , Masculino , Modelos Moleculares , Neomicina/análogos & derivados , Neomicina/química , Neomicina/toxicidade , Paromomicina/farmacologia , Paromomicina/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/toxicidade , RNA Ribossômico/química , Ribossomos/química
14.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1675-82, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484225

RESUMO

Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of ß-xylosidases. One of these ß-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Šresolution), the E335G catalytic mutant (2.95 Šresolution), a potential mercury derivative (2.15 Šresolution) and a selenomethionine derivative (3.90 Šresolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein.


Assuntos
Geobacillus stearothermophilus/enzimologia , Xilosidases/química , Cristalografia , Conformação Proteica
15.
Medchemcomm ; 5(8): 1092-1105, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25147726

RESUMO

Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various in-vitro, ex-vivo and in-vivo models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.

17.
Adv Exp Med Biol ; 801: 741-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664766

RESUMO

The Usher syndrome (USH) is the most common form of inherited deaf-blindness with a prevalence of ~ 1/6,000. Three clinical subtypes (USH1-USH3) are defined according to the severity of the hearing impairment, the presence or absence of vestibular dysfunction and the age of onset of retinitis pigmentosa (RP). USH1 is the most severe subtype with congenital severe to profound hearing loss and onset of RP before puberty. Currently only the amelioration of the hearing deficiency is implemented, but no treatment of the senso-neuronal degeneration in the eye exists.In our studies we are focusing on the evaluation of gene-based therapies to cure the retinal degeneration of USH1C patients: (i) gene augmentation using recombinant adeno-associated virus, (ii) genome editing by homologous recombination mediated by zinc-finger nucleases and, (iii) read-through therapy using novel designer aminoglycosides and PTC124. Latter compounds target in-frame nonsense mutations which account for ~ 20 % of all USH cases.All analyzed gene-based therapy strategies lead to the restoration of USH protein expression. These adjustments may be sufficient to reduce the progression of retinal degeneration, which would greatly improve the life quality of USH patients.


Assuntos
Aminoglicosídeos/uso terapêutico , Terapia Genética/métodos , Degeneração Retiniana/terapia , Síndromes de Usher/terapia , Humanos , Prevalência , Biossíntese de Proteínas/genética , Degeneração Retiniana/epidemiologia , Degeneração Retiniana/genética , Síndromes de Usher/epidemiologia , Síndromes de Usher/genética
18.
Mol Genet Metab ; 111(3): 374-381, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24411223

RESUMO

Nonsense suppression therapy is a therapeutic approach aimed at treating genetic diseases caused by in-frame premature termination codons (PTCs; also commonly known as nonsense mutations). This approach utilizes compounds that suppress translation termination at PTCs, which allows translation to continue and partial levels of deficient protein function to be restored. We hypothesize that suppression therapy can attenuate the lysosomal storage disease mucopolysaccharidosis type I-Hurler (MPS I-H), the severe form of α-L-iduronidase deficiency. α-L-iduronidase participates in glycosaminoglycan (GAG) catabolism and its insufficiency causes progressive GAG accumulation and onset of the MPS I-H phenotype, which consists of multiple somatic and neurological defects. 60-80% of MPS I-H patients carry a nonsense mutation in the IDUA gene. We previously showed that 2-week treatment with the designer aminoglycoside NB84 restored enough α-L-iduronidase function via PTC suppression to reduce tissue GAG accumulation in the Idua(tm1Kmke) MPS I-H mouse model, which carries a PTC homologous to the human IDUA-W402X nonsense mutation. Here we report that long-term NB84 administration maintains α-L-iduronidase activity and GAG reduction in Idua(tm1Kmke) mice throughout a 28-week treatment period. An examination of more complex MPS I-H phenotypes in Idua(tm1Kmke) mice following 28-week NB84 treatment revealed significant moderation of the disease in multiple tissues, including the brain, heart and bone, that are resistant to current MPS I-H therapies. This study represents the first demonstration that long-term nonsense suppression therapy can moderate progression of a genetic disease.


Assuntos
Aminoglicosídeos/administração & dosagem , Códon sem Sentido/genética , Iduronidase/genética , Mucopolissacaridose I/genética , Trissacarídeos/administração & dosagem , Animais , Modelos Animais de Doenças , Progressão da Doença , Glicosaminoglicanos/metabolismo , Humanos , Iduronidase/metabolismo , Camundongos , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/enzimologia , Fenótipo
19.
JIMD Rep ; 13: 139-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24193436

RESUMO

The premature stop codon mutations, Q70X and W402X, are the most common α-L-iduronidase gene (IDUA) mutations in mucopolysaccharidosis type I (MPS I) patients. Read-through drugs have been used to suppress premature stop codons, and this can potentially be used to treat patients who have this type of mutation. We examined the effects of aminoglycoside treatment on the IDUA mutations Q70X and W402X in cultured cells and show that 4,5-disubstituted aminoglycosides induced more read-through for the W402X mutation, while 4,6-disubstituted aminoglycosides promoted more read-through for the Q70X mutation: lividomycin (4,5-disubstituted) induced a 7.8-fold increase in α-L-iduronidase enzyme activity for the W402X mutation; NB54 (4,5-disubstituted) induced a 3.7 fold increase in the amount of α-L-iduronidase enzyme activity for the W402X mutation, but had less effect on the Q70X mutation, whereas gentamicin (4,6-disubstituted) had the reverse effect on read-through for both mutations. The predicted mRNA secondary structural changes for both mutations were markedly different, which may explain these different effects on read-through for these two premature stop codons.

20.
Am J Respir Cell Mol Biol ; 50(4): 805-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24251786

RESUMO

New drugs are needed to enhance premature termination codon (PTC) suppression to treat the underlying cause of cystic fibrosis (CF) and other diseases caused by nonsense mutations. We tested new synthetic aminoglycoside derivatives expressly developed for PTC suppression in a series of complementary CF models. Using a dual-luciferase reporter system containing the four most prevalent CF transmembrane conductance regulator (CFTR) nonsense mutations (G542X, R553X, R1162X, and W1282X) within their local sequence contexts (the three codons on either side of the PTC), we found that NB124 promoted the most readthrough of G542X, R1162X, and W1282X PTCs. NB124 also restored full-length CFTR expression and chloride transport in Fischer rat thyroid cells stably transduced with a CFTR-G542XcDNA transgene, and was superior to gentamicin and other aminoglycosides tested. NB124 restored CFTR function to roughly 7% of wild-type activity in primary human bronchial epithelial (HBE) CF cells (G542X/delF508), a highly relevant preclinical model with endogenous CFTR expression. Efficacy was further enhanced by addition of the CFTR potentiator, ivacaftor (VX-770), to airway cells expressing CFTR PTCs. NB124 treatment rescued CFTR function in a CF mouse model expressing a human CFTR-G542X transgene; efficacy was superior to gentamicin and exhibited favorable pharmacokinetic properties, suggesting that in vitro results translated to clinical benefit in vivo. NB124 was also less cytotoxic than gentamicin in a tissue-based model for ototoxicity. These results provide evidence that NB124 and other synthetic aminoglycosides provide a 10-fold improvement in therapeutic index over gentamicin and other first-generation aminoglycosides, providing a promising treatment for a wide array of CFTR nonsense mutations.


Assuntos
Aminoglicosídeos/farmacologia , Aminofenóis/farmacologia , Códon sem Sentido/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Quinolonas/farmacologia , Aminoglicosídeos/síntese química , Aminoglicosídeos/farmacocinética , Aminoglicosídeos/toxicidade , Aminofenóis/farmacocinética , Animais , Transporte Biológico , Linhagem Celular , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Transgênicos , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/patologia , Quinolonas/farmacocinética , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA