Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791243

RESUMO

Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.


Assuntos
Regeneração Óssea , Exossomos , Neovascularização Fisiológica , Humanos , Exossomos/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/irrigação sanguínea , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais , Células Endoteliais/metabolismo , Angiogênese
2.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163315

RESUMO

Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.


Assuntos
Osteoporose/tratamento farmacológico , Animais , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Humanos , Osteoclastos/efeitos dos fármacos
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867347

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSCs) have shown their multipotential including differentiating towards endothelial and smooth muscle cell lineages, which triggers a new interest for using hMSCs as a putative source for cardiovascular regenerative medicine. Our recent publication has shown for the first time that purinergic 2 receptors are key players during hMSC differentiation towards adipocytes and osteoblasts. Purinergic 2 receptors play an important role in cardiovascular function when they bind to extracellular nucleotides. In this study, the possible functional role of purinergic 2 receptors during MSC endothelial and smooth muscle differentiation was investigated. METHODS AND RESULTS: Human MSCs were isolated from liposuction materials. Then, endothelial and smooth muscle-like cells were differentiated and characterized by specific markers via Reverse Transcriptase-PCR (RT-PCR), Western blot and immunochemical stainings. Interestingly, some purinergic 2 receptor subtypes were found to be differently regulated during these specific lineage commitments: P2Y4 and P2Y14 were involved in the early stage commitment while P2Y1 was the key player in controlling MSC differentiation towards either endothelial or smooth muscle cells. The administration of natural and artificial purinergic 2 receptor agonists and antagonists had a direct influence on these differentiations. Moreover, a feedback loop via exogenous extracellular nucleotides on these particular differentiations was shown by apyrase digest. CONCLUSIONS: Purinergic 2 receptors play a crucial role during the differentiation towards endothelial and smooth muscle cell lineages. Some highly selective and potent artificial purinergic 2 ligands can control hMSC differentiation, which might improve the use of adult stem cells in cardiovascular tissue engineering in the future.


Assuntos
Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Receptores Purinérgicos P2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Lipectomia , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Adulto Jovem
4.
Biomolecules ; 9(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817802

RESUMO

Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.


Assuntos
Regeneração Óssea , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Polissacarídeos/química , Animais , Materiais Biocompatíveis/química , Transplante Ósseo/métodos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
Comput Struct Biotechnol J ; 13: 75-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26900431

RESUMO

A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.

6.
PLoS One ; 9(3): e91664, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621607

RESUMO

BACKGROUND: Endothelial cell co-culture assays are differentiation assays which simulate the formation of capillary-like tubules with the aid of a supportive cell layer. Different cell types have been employed as a supportive cell layer, including human pulmonary artery smooth muscle cells (PASMCs) and human mammary fibroblasts. However, these sources of human tissue-derived cells are limited, and more readily accessible human or animal tissue-derived cell sources would simplify the endothelial cell co-culture assay. In the present study, we investigated the potential use of alternative, accessible supportive cells for endothelial cell co-culture assay, including human umbilical cord and ovine carotid artery. METHODS AND RESULTS: Human umbilical artery SMCs (HUASMCs) and ovine carotid artery-derived cells were seeded into 96-well plates, followed by addition of human umbilical vein endothelial cells (HUVECs). Nine days after co-culture, cells were fixed, immunostained and analysed using an in vitro angiogenesis quantification tool. Capillary-like structures were detected on ovine carotid artery-derived supportive cell layers. The initial cell number, as well as pro- and anti-angiogenic factors (VEGF, PDGF-BB and Bevacizumab), had a positive or negative influence on the number of capillary-like structures. Furthermore, HUVECs from different donors showed distinct levels of VEGF receptor-2, which correlated with the amount of capillary-like structures. In the case of HUASMC supportive cell layers, HUVECs detached almost completely from the surface. CONCLUSIONS: Cells of different origin have a varying applicability regarding the endothelial cell co-culture assay: under the conditions described here, ovine carotid artery-derived cells seem to be more suitable than HUASMCs for an endothelial co-culture assay. Furthermore, the ovine carotid artery-derived cells are easier to obtain and are in more abundant supply than the currently used dermal or breast tissue cells. The use of ovine carotid artery-derived cells simplifies the endothelial co-culture assay with respect to testing large amounts of pro- and anti-angiogenic factors.


Assuntos
Capilares/citologia , Artérias Carótidas/citologia , Técnicas de Cocultura/métodos , Células Alimentadoras/citologia , Ovinos , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Becaplermina , Bevacizumab , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Cordão Umbilical/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
J Clin Med ; 3(1): 39-87, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26237251

RESUMO

This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA