Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Chemosphere ; 349: 140809, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036229

RESUMO

The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.


Assuntos
Gryllidae , Nanodiamantes , Animais , Nanodiamantes/toxicidade , Gryllidae/fisiologia , Linhagem Celular , Fatores de Tempo
3.
Environ Entomol ; 52(6): 1057-1070, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37804089

RESUMO

Mechanisms, including autophagy and apoptosis, which serve to regulate and ensure proper organism functions under optimal conditions, play additional defensive roles under environmental pressure. The aim of this study was to test the following hypotheses: (i) elevated autophagy and apoptosis intensity levels, as defensive processes in response to contact with cadmium, are maintained for a limited number of generations and (ii) the number of generations after which levels of cell death processes reach the reference level depends on selective pressure. Cell death processes were assessed by light and transmission electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL), and cytometric analyses. Model insects (Spodoptera exiqua, Hübner, 1808) were orally exposed to various concentrations of cadmium for 18 generations and compared with reference strains exposed to cadmium or not (control) for over 150 generations. Elevated programmed cell death intensity levels decreased after several generations, indicating tolerance of individuals to cadmium in the diet and verifying the first hypothesis; however, testing the second hypothesis indicated that the number of generations depended not only on pressure intensity, but also on cell death type, since levels of autophagy remained increased for a minimum of 12 generations.


Assuntos
Cádmio , Mariposas , Animais , Spodoptera/fisiologia , Cádmio/toxicidade , Cádmio/metabolismo , Larva/metabolismo , Mariposas/metabolismo , Morte Celular
4.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629006

RESUMO

The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.


Assuntos
Poluentes Ambientais , Gryllidae , Nanopartículas , Animais , Gryllidae/genética , 8-Hidroxi-2'-Desoxiguanosina , DNA
5.
PeerJ ; 11: e15337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483985

RESUMO

To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.


Assuntos
Bacillus subtilis , Corpos Estranhos , Aranhas , Animais , Feminino , Bacillus subtilis/imunologia , Corpos Estranhos/imunologia , Aranhas/genética , Aranhas/imunologia , Aranhas/microbiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Fatores Etários , Regulação da Expressão Gênica/imunologia , Apoptose/imunologia , Hemócitos/imunologia
6.
Environ Toxicol Pharmacol ; 101: 104209, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399851

RESUMO

Microplastic enlisted as a contaminant of emerging concerns in polluted environments interact with "traditional" contaminants such as metals, causing, among others, their increased accumulation in the body. Harmful effects depend on the exposed animals' possible preadaptation and/or cross-tolerance. The project aimed to assess the role of this phenomenon in the limited toxicity of polypropylene fibers (PPf) in 0%, 0.02%, 0.06, 0.18%, 0.54%, and 1.6% of Cd-supplemented food of larvae of Spodoptera exigua multigenerationally selected to cadmium tolerance. The activity of 20 digestive enzymes (API-ZYM test), defensins, and heat shock proteins, HSP70 levels in the exposed groups were used as biomarkers. PPfs caused the increase of Cd accumulation in the body, while intake of polypropylene microfibers did not change the biomarker levels. Moreover, multigenerational Cd pre-exposure, due to increased tolerance of Cd and, possibly, cross-tolerance, prepares the insects for an additional stressor (PPf) alone and in interaction with cadmium.


Assuntos
Cádmio , Polipropilenos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Polipropilenos/metabolismo , Plásticos , Proteínas de Choque Térmico , Spodoptera , Biomarcadores/metabolismo
7.
Chemosphere ; 303(Pt 2): 135129, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35636606

RESUMO

Nanodiamonds (NDs) are considered a material with low toxicity. However, no studies describe the effects of ND withdrawal after multigenerational exposure. The aim was to evaluate ND exposure (in the 1st and 2nd generations) effects at low concentrations (0.2 or 2 mg kg-1) and withdrawal (in the 3rd generation) in the wild (H) and longevity-selected (D) model insect Acheta domesticus. We measured selected oxidative stress parameters, immunity, types of cell death, and DNA damage. Most of the results obtained in the 1st generation, e.g., catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), defensins, or apoptosis level, confirmed no significant toxicity of low doses of NDs. Interestingly, strain-specific differences were observed. D-strain crickets reduced autophagy, the number of ROS+ cells, and DNA damage. The effect can be a symptom of mobilization of the organism and stimulation of physiological defense mechanisms in long-living organisms. The 2nd-generation D-strain insects fed ND-spiked food at higher concentrations manifested a reduction in CAT, TAC, early apoptosis, and DNA damage, together with an increase in HSP70 and defensins. ROS+ cells and cells with reduced membrane potential and autophagy did not differ significantly from the control. H-strain insects revealed a higher number of ROS+ cells and cells with reduced membrane potential, decreased CAT activity, and early apoptosis. Elimination of NDs from the diet in the 3rd generation did not cause full recovery of the measured parameters. We noticed an increase in the concentration of HSP70 and defensins (H-strain) and a decrease in apoptosis (D-strain). However, the most visible increase was a significant increase in DNA damage, especially in H-strain individuals. The results suggest prolonged adverse effects of NDs on cellular functions, reaching beyond "contact time" with these particles. Unintentional and/or uncontrolled ND pollution of the environment poses a new challenge for all organisms inhabiting it, particularly during multigenerational exposure.


Assuntos
Nanodiamantes , Animais , Antioxidantes/metabolismo , Defensinas/metabolismo , Defensinas/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Longevidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613733

RESUMO

The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.


Assuntos
Grafite , Longevidade , Humanos , Dano ao DNA , Grafite/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Reparo do DNA
9.
Gen Comp Endocrinol ; 308: 113781, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862048

RESUMO

The juvenile hormone (JH) plays a crucial role in arthropod physiological processes, e.g., the regulation of metamorphosis, development, and reproduction (the vitellogenesis, the development of gonads, egg production). Still, data about this sesquiterpenoid hormone in spiders (Araneae) are rudimentary and equivocal. The presence of the JH or its precursors (e.g. methyl farnesoate) is not confirmed in spiders. The site of synthesis of its is still undetermined. No receptors of the JH are identified in spiders and thus, the molecular mechanism of action of this group of hormones is still unknown. Here we show by using the phylogenetic analysis and qPCR method the presence of the transcript of the enzyme catalyzing the last phase of the JH biosynthesis pathway (epox CYP15A1), the JH receptor (Met), and a possible candidate to the methyl farnesoate receptor (USP) in the various tissues and stages of ontogenesis in both sexes of spider Parasteatoda tepidariorum. Our results indicate that the juvenile hormone and/or methyl farnesoate presence is possible in the species of spider P. tepidariorum. The presence of the Ptepox CYP15A1 gene suggests that the main site of the juvenile hormone synthesis can be the integument and not the Schneider organ 2. It also seems that the juvenile hormone and/or methyl farnesoate can be hormones with biological activity due to the presence of the transcript of insect and crustacean JH/MG receptor - Met. The Ptepox CYP15A1, PtMet, and Ptusp expression are sex-, tissue-and time-specific. This study is the first report about the presence of the Ptepox CYP15A1 and PtMet transcripts in the Arachnida, which may indicate the presence of the juvenile hormone and/or methyl farnesoate in spiders.


Assuntos
Hormônios Juvenis , Aranhas , Animais , Feminino , Hormônios Juvenis/metabolismo , Masculino , Metamorfose Biológica , Filogenia , Aranhas/genética , Aranhas/metabolismo , Vitelogênese
10.
Int J Biometeorol ; 65(10): 1647-1658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33880644

RESUMO

Dwelling intensity of horse-chestnut miner (Cameraria ohridella) larvae in various leaves insolation and temperature was measured to determine whether this pest's development follows a predictable pattern or depends more on local microenvironment conditions. Mines growing on leaves of mature host plants (Aesculus hippocastanum L.) in their natural conditions were photographed for two consecutive generations of the pest and in two separated vegetation periods. Apart from meteorological data obtained from the nearest station, the temperature of intact and mined parts of sun-exposed and shaded leaf blades was measured at various daytimes throughout the experiment. Obtained sets of digital data were analysed and combined to model mine area growth as a function of degree-days sum by adopting of Verhulst logistic equation. We showed the predictive potential of our model based on experimental data, and it may be useful in the scheduling of pest control measures in natural conditions. Our analyses also revealed that despite significant differences in microenvironment conditions depending on mines' insolation, the horse-chestnut miner larvae could partially compensate for them and complete their development at similar endpoints expressed as the cumulative sum of degree-days. We conclude that computer-aided analysis of photographic documentation of leaf-miner larval growth followed by mathematical modelling offers a noninvasive, reliable, and inexpensive alternative for monitoring local leaf-miners populations.


Assuntos
Aesculus , Mariposas , Animais , Cavalos , Larva , Folhas de Planta , Árvores
11.
Environ Pollut ; 268(Pt A): 115366, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035914

RESUMO

Cadmium as a common environmental stressor may exert highly toxic effects on herbivorous insects. The question was whether possible elevation of an oxidative stress and imbalance of energetic reserves in insects may depend on developmental stage, sex and insect population's multigenerational history of exposure to cadmium. So, the aim of this study was to compare of the development traits, total antioxidant capacity, lipid peroxidation, RSSR to RSH ratio and the concentration of carbohydrates, glycogen, lipids and proteins in whole individuals (larvae or pupae) of Spodoptera exigua originating from two strains: control and selected over 120 generations with sublethal metal concentration (44 Cd mg per dry weight of diet). Generally, the increase of the protein, carbohydrates, glycogen concentration and lipid peroxidation decrease with age of the larvae were found. Revealed cases of a higher mobilisation of carbohydrates and proteins, and changes in total antioxidant capacity or lipid peroxidation, in individuals being under metal exposure, occurred in strain-depended mode. Short-term Cd exposure effect was connected with possible higher engagement of proteins and glycogen in detoxification processes, but also higher concentration of lipid peroxidation. In turn, for long-term Cd exposure effect lower lipids concentration and higher thiols usage seemed to be more specific.


Assuntos
Cádmio , Estresse Oxidativo , Animais , Antioxidantes , Cádmio/toxicidade , Humanos , Larva , Spodoptera
12.
Sci Rep ; 10(1): 21141, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273657

RESUMO

Autophagy is a natural process that aims to eliminate malfunctioning cell parts, organelles or molecules under physiological conditions. It is also induced in response to infection, starvation or oxidative stress to provide energy in case of an energy deficit. The aim of this 2-dimensional study was to test if, and if so, how, this process depends on the concentration of cadmium in food (with Cd concentrations from 0 to 352 µg of Cd per g of food (dry weight)-D1 dimension) and the history of selection pressure (160 vs 20 generations of exposure to Cd-D2 dimension). For the study, the 5th instar larvae of a unique strain of the moth Spodoptera exigua that was selected for cadmium tolerance for 160 generations (44 µg of Cd per g of food (dry weight)), as well as 20-generation (11, 22 and 44 µg of Cd per g of food (dry weight)) and control strains, were used. Autophagy intensity was measured by means of flow cytometry and compared with life history parameters: survivability and duration of the 3rd larval stage. The highest values of autophagy markers were found in the groups exposed to the highest Cd concentration and corresponded (with a significant correlation coefficient) to an increased development duration or decreased survivorship in the respective groups. In conclusion, autophagy is probably initiated only if any other defense mechanisms, e.g., antioxidative mechanisms, are not efficient. Moreover, in individuals from pre-exposed populations, the intensity of autophagy is lower.


Assuntos
Autofagia/efeitos dos fármacos , Intoxicação por Cádmio/patologia , Cádmio/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Poluentes Ambientais/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia
13.
Sci Total Environ ; 745: 141048, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758757

RESUMO

Human activity is a serious cause of extensive changes in the environment and a constant reason for the emergence of new stress factors. Thus, to survive and reproduce, organisms must constantly implement a program of adaptation to continuously changing conditions. The research presented here is focused on tracking slow changes occurring in Spodoptera exigua (Lepidoptera: Noctuidae) caused by multigenerational exposure to sub-lethal cadmium doses. The insects received food containing cadmium at concentrations of 5, 11, 22 and 44 µg per g of dry mass of food. The level of DNA stability was monitored by a comet assay in subsequent generations up to the 36th generation. In the first three generations, the level of DNA damage was high, especially in the groups receiving higher doses of cadmium in the diet. In the fourth generation, a significant reduction in the level of DNA damage was observed, which could indicate that the desired stability of the genome was achieved. Surprisingly, however, in subsequent generations, an alternating increase and decrease was found in DNA stability. The observed cycles of changing DNA stability were longer lasting in insects consuming food with a lower Cd content. Thus, a transient reduction in genome stability can be perceived as an opportunity to increase the number of genotypes that undergo selection. This phenomenon occurs faster if the severity of the stress factor is high but is low enough to allow the population to survive.


Assuntos
Cádmio/toxicidade , Dano ao DNA , Animais , Instabilidade Genômica , Humanos , Larva , Spodoptera/genética
14.
Sensors (Basel) ; 20(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375421

RESUMO

Maintaining good condition of dam reservoirs in urban areas seems increasingly important due to their valuable role in mitigating the effects of global warming. The aim of this study is to analyze possibilities to improve water quality and ecosystem condition of the Paprocany dam reservoir (highly urbanized area of southern Poland) using current data of the water parameters, historical sources, and DPSIR (Driver-Pressure-State-Impact-Response) and 3D modeling concerning human activity and the global warming effects. In its history Paprocany reservoir overcame numerous hydrotechnical changes influencing its present functioning. Also, its current state is significantly influenced by saline water from the coal mine (5 g L-1 of chlorides and sulphates) and biogenic elements in recreational area (about 70 mg L-1 of chlorate and to 1.9 mg L-1 Kjeldahl nitrogen) and in sediments (222.66 Mg of Kjeldahl nitrogen, 45.65 Mg of P, and 1.03 Mg of assimilable phosphorus). Concluding, the best solutions to improve the Paprocany reservoir water quality comprise: increasing alimentation with water and shortening the water exchange time, restoration of the 19th century water treatment plant, and wetlands and reed bed area revitalization. The study also proved the applicability of mathematical models in planning of the actions and anticipating their efficiency.

15.
J Exp Biol ; 223(Pt 6)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32098878

RESUMO

In cohort splitting, diverging sub-cohorts may show substantial differences in their growth and developmental rates. Although in the past, causes and adaptive value of cohort splitting were studied in detail, individual-level consequences of cohort splitting are still rather overlooked. Life history theory predicts that considerably increased growth and developmental rates should be traded off against other costly life history traits. However, it is not clear whether one should expect such associations in adaptive developmental plasticity scenarios, because natural selection might have promoted genotypes that mitigate those potential costs of rapid development. To address these contrasting propositions, we assessed life history traits in the wolf spider Pardosa agrestis, both collected from natural habitat and reared in laboratory. We found that some traits are negatively associated with developmental rates in spiders collected from the wild, but these associations were relaxed to a considerable extent in laboratory-reared specimens. In general, we observed no consistent trend for the presence of developmental costs, although some results might suggest higher relative fecundity costs in rapidly developing females. Our study provides a detailed approach to the understanding of individual-level consequences of cohort splitting, and to the associations between key life history traits in adaptive developmental plasticity scenarios.


Assuntos
Características de História de Vida , Aranhas , Animais , Feminino , Fertilidade , Fenótipo , Seleção Genética
16.
PLoS One ; 14(9): e0222274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31504071

RESUMO

Allatoregulatory neuropeptides are multifunctional proteins that take part in the synthesis and secretion of juvenile hormones. In insects, allatostatins are inhibitors of juvenile hormone biosynthesis in the corpora allata while allatotropins, act as stimulators. By quantitative real-time PCR, we analyzed the gene expression of allatostatin A (PtASTA), allatostatin B (PtASTB), allatostatin C (PtASTC), allatotropin (PtAT) and their receptors (PtASTA-R, PtASTB-R, PtASTC-R, PtAT-R) in various tissues in different age groups of female spiders. In the presented manuscript, the presence of allatostatin A, allatostatin C, and allatotropin are reported in females of the spider P. tepidariorum. The obtained results indicated substantial differences in gene expression levels for allatoregulatory neuropeptides and their receptors in the different tissues. Additionally, the gene expression levels also varied depending on the female age. Strong expression was observed coinciding with sexual maturation in the neuroendocrine and nervous system, and to a lower extent in the digestive tissues and ovaries. Reverse trends were observed for the expression of genes encoding the receptors of these neuropeptides. In conclusion, our study is the first hint that the site of synthesis and secretion is fulfilled by similar structures as observed in other arthropods. In addition, the results of the analysis of spider physiology give evidence that the general functions like regulation of the juvenile hormone synthesis, regulation of the digestive tract and ovaries action, control of vitellogenesis process by the neuropeptides seem to be conserved among arthropods and are the milestone to future functional studies.


Assuntos
Proteínas de Insetos/genética , Neuropeptídeos/genética , Aranhas/genética , Envelhecimento/genética , Animais , Feminino , Especificidade de Órgãos , Aranhas/crescimento & desenvolvimento , Transcriptoma
17.
Ecotoxicol Environ Saf ; 185: 109703, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561074

RESUMO

In this study we focused on Physella acuta, an alien snail species in order to determine their ability of bioaccumulation of heavy metals in their shells, bodies, the difference in accumulation in relation to age classes, and the influence of ecological variables on the community composition and density. On the basis of the results of ecological, toxicological, and experimental analyses we aimed to study the potential invasive features of P. acuta in comparision with the native species Stagnicola palustris. The content of Cu and Zn in the substratum and ammonia in the water was strongly related to the patterns of distribution of P. acuta. The content of Cd, Pb, and Cu in the shell fraction was always significantly lower than in the body fraction. A comparison of accumulation with respect to the size classes of P. acuta indicated that the lowest metal concentration in the body was typical for the largest individuals, except for Zn. Metal content in the bodies of the native species did not differ from the content measured in their analogous group of the largest individuals of P. acuta. The lowest value of bioaccumulation factor (BAF) was found for the large class of specimens of this species for each metal. A distinct decrease in the value of BAF in relation to the size of snails was found for cadmium. A 100% hatching success found in masses collected from pond confirmed the high reproductive potential of P. acuta which can be a factor that promotes its invasive features following its ability to occur in very high densities, but not necessarily the ability of metal accumulation in the body. Physella acuta can be used as a model organism in the studies on the accumulation of heavy metals however, the extend of accumulation can differ among the age classes. Because of the high tolerance of P. acuta to heavy metal pollution, in the future this species can be found in significantly polluted habitats, inhabiting free ecological niches, and occurring in high densities in snail communities.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Metais Pesados/metabolismo , Modelos Teóricos , Caramujos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bioacumulação , Ecossistema , Espécies Introduzidas , Metais Pesados/análise , Poluentes Químicos da Água/análise
18.
Chemosphere ; 235: 785-793, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31280047

RESUMO

The aim of this study was to investigate whether zinc supplementation modulates cadmium toxicity in the beet armyworm Spodoptera exigua selected for 135 generations towards cadmium tolerance. To achieve this, larvae originating from three laboratory populations of S. exigua (control strain - C; cadmium-intoxicated for 135 generations strain - Cd, and control strain intoxicated with Cd for 1 generation - CCd) were additionally exposed to zinc in three concentrations (Zn1, 400 µg Zn·g-1 dry mass of food; Zn2; 200 µg Zn·g-1 dry mass of food; Zn3, 100 µg Zn·g-1 dry mass of food). As the markers of toxicity, a life history traits (the duration of L4 and L5 stages), cellular (DNA damage indices) and biochemical parameters (ADP/ATP ratio and ATP and HSP70 concentrations) were chosen. The duration of larval stages of Zn supplemented larvae was prolonged, while cellular and biochemical indicators, in general, appeared to be lower in comparison to the insects from respective reference groups in each laboratory populations. Moreover, the range of the differences depended on zinc concentration in food. We can suspect that zinc supplementation contributed to the protection of S. exigua individuals against negative effects of cadmium intoxication, probably at the cost of growth rate. Significant differences in the response pattern between insects from different laboratory populations indicate that the influence of additional stress factors is dependent on the overall condition of animals and their previous adaptation to other stressors.


Assuntos
Adaptação Fisiológica , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Spodoptera/fisiologia , Zinco/metabolismo , Animais , Antioxidantes/metabolismo , Beta vulgaris , Tolerância a Medicamentos , Proteínas de Choque Térmico HSP70 , Larva/efeitos dos fármacos , Spodoptera/efeitos dos fármacos
19.
Ecotoxicol Environ Saf ; 178: 1-8, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30980963

RESUMO

The aim of this study was to investigate whether the cadmium tolerance developed in the beet armyworm Spodoptera exigua selected for over 150 generations may be related to synthesis of the stress proteins metallothioneins (Mts) and 70 kDa heat shock proteins (HSP70). To achieve this, six S. exigua strains (control, k), 150-generation Cd exposure strain (cd), and four 18-generation Cd exposure strains differing in Cd concentration (cd44, cd22, cd11, cd5) were reared. Stress protein level was measured in the midgut of the 5th larval stage after 1-6, 12 and 18 generations. Cd contents was measured in the pupae. Unlike Cd concentration, which depended on metal contents in food but was not generation-dependent, the pattern of Mts and HSP70 concentrations changed in experimental strains from generation to generation. Stress protein levels in the insects exposed to the highest Cd concentration (the same as in the 150-generation Cd exposure strain), initially higher than in the control strain, after the 12th generation did not differ from the level measured in the control strains. It seems therefore that stress proteins play a protective role in insects of lower tolerance to cadmium. The tolerance developed during multigenerational exposure probably relies on mechanisms other than Mt and HSP70 synthesis.


Assuntos
Cádmio/toxicidade , Tolerância a Medicamentos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Metalotioneína/metabolismo , Poluentes do Solo/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Cádmio/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Modelos Teóricos , Pupa/efeitos dos fármacos , Pupa/metabolismo , Poluentes do Solo/metabolismo , Spodoptera/metabolismo
20.
BMC Dev Biol ; 19(1): 4, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849941

RESUMO

BACKGROUND: Knowledge about vitellogenesis in spiders is rudimentary. Therefore, the aim of study was to check the vitellogenin (Vg) presence in various tissues of the female spider Parasteatoda tepidariorum, determine when and where vitellogenesis starts and takes place, and the putative role of selected hormones in the vitellogenesis. RESULTS: Here we show two genes encoding Vg (PtVg4 and PtVg6) in the genome of the spider P. tepidariorum. One gene PtVg4 and three subunits of Vg (250 kDa, 47 kDa and 30 kDa) are expressed in the midgut glands, ovaries and hemolymph. Heterosynthesis of the Vg in the midgut glands and autosynthesis in the ovaries were observed. Vitellogenesis begins in the last nymphal stage in the midgut glands (heterosynthesis). However, after sexual maturity is reached, Vg is also synthesized in the ovaries (autosynthesis). Changes in the PtVg4 expression level and in the Vg concentration after treatment with 20-hydroxyecdysone, a juvenile hormone analog (fenoxycarb) and an antijuvenoid compound (precocene I) were observed. Therefore, we propose a hypothetical model for the hormonal regulation of vitellogenesis in P. tepidariorum. CONCLUSIONS: Our results are the first comprehensive study on spider vitellogenesis. In our opinion, this work will open discussion on the evolutionary context of possible similarities in the hormonal control of vitellogenesis between P. tepidariorum and other arthropods as well as their consequences.


Assuntos
Hormônios Juvenis/metabolismo , Ovário/citologia , Vitelogênese/fisiologia , Vitelogeninas/análise , Animais , Benzopiranos/farmacologia , Ecdisterona/farmacologia , Feminino , Regulação da Expressão Gênica/genética , Ovário/metabolismo , Fenilcarbamatos/farmacologia , Aranhas/metabolismo , Vitelogênese/genética , Vitelogeninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA