Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2404249, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953366

RESUMO

The photoelectrochemical (PEC) method has the potential to be an attractive route for converting and storing solar energy as chemical bonds. In this study, a maximum NH3 production yield of 1.01 g L-1 with a solar-to-ammonia conversion efficiency of 8.17% through the photovoltaic electrocatalytic (PV-EC) nitrate (NO3 -) reduction reaction (NO3 -RR) is achieved, using silicon heterojunction solar cell technology. Additionally, the effect of tuning the operation potential of the PV-EC system and its influence on product selectivity are systematically investigated. By using this unique external resistance tuning approach in the PV-EC system, ammonia production through nitrate reduction performance from 96 to 360 mg L-1 is enhanced, a four-fold increase. Furthermore, the NH3 is extracted as NH4Cl powder using acid stripping, which is essential for storing chemical energy. This work demonstrates the possibility of tuning product selectivity in PV-EC systems, with prospects toward pilot scale on value-added product synthesis.

2.
Nat Commun ; 15(1): 708, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267408

RESUMO

Thermally evaporated C60 is a near-ubiquitous electron transport layer in state-of-the-art p-i-n perovskite-based solar cells. As perovskite photovoltaic technologies are moving toward industrialization, batch-to-batch reproducibility of device performances becomes crucial. Here, we show that commercial as-received (99.75% pure) C60 source materials may coalesce during repeated thermal evaporation processes, jeopardizing such reproducibility. We find that the coalescence is due to oxygen present in the initial source powder and leads to the formation of deep states within the perovskite bandgap, resulting in a systematic decrease in solar cell performance. However, further purification (through sublimation) of the C60 to 99.95% before evaporation is found to hinder coalescence, with the associated solar cell performances being fully reproducible after repeated processing. We verify the universality of this behavior on perovskite/silicon tandem solar cells by demonstrating their open-circuit voltages and fill factors to remain at 1950 mV and 81% respectively, over eight repeated processes using the same sublimed C60 source material. Notably, one of these cells achieved a certified power conversion efficiency of 30.9%. These findings provide insights crucial for the advancement of perovskite photovoltaic technologies towards scaled production with high process yield.

3.
Nanoscale ; 15(42): 16984-16991, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830448

RESUMO

Perovskite/silicon tandem solar cells have a tremendous potential to boost renewable electricity production thanks to their very high performance combined with promising cost structure. However, for actual field deployment, any solar cell technology needs to be assembled into modules, where the associated processes involve several challenges that may affect both the performance and stability of the devices. For instance, due to its hygroscopic nature, ethylene vinyl acetate (EVA) is incompatible with perovskite-based photovoltaics. To circumvent this issue, we investigate here two alternative encapsulant polymers for the packaging of perovskite/silicon tandems into minimodules: a thermoplastic polyurethane (TPU) and a thermoplastic polyolefin (TPO) elastomer. To gauge their impact on tandem-module performance and stability, we performed two internationally established accelerated module stability tests (IEC 61215): damp heat exposure and thermal cycling. Finally, to better understand the thermomechanical properties of the two encapsulants and gain insight into their relation to the thermal cycling of encapsulated tandems, we performed a dynamic mechanical thermal analysis. Our understanding of the packaging process of the tandem module provides useful insights for the development of commercially viable perovskite photovoltaics.

4.
Nature ; 623(7988): 732-738, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769785

RESUMO

Monolithic perovskite/silicon tandem solar cells are of great appeal as they promise high power conversion efficiencies (PCEs) at affordable cost. In state-of-the-art tandems, the perovskite top cell is electrically coupled to a silicon heterojunction bottom cell by means of a self-assembled monolayer (SAM), anchored on a transparent conductive oxide (TCO), which enables efficient charge transfer between the subcells1-3. Yet reproducible, high-performance tandem solar cells require energetically homogeneous SAM coverage, which remains challenging, especially on textured silicon bottom cells. Here, we resolve this issue by using ultrathin (5-nm) amorphous indium zinc oxide (IZO) as the interconnecting TCO, exploiting its high surface-potential homogeneity resulting from the absence of crystal grains and higher density of SAM anchoring sites when compared with commonly used crystalline TCOs. Combined with optical enhancements through equally thin IZO rear electrodes and improved front contact stacks, an independently certified PCE of 32.5% was obtained, which ranks among the highest for perovskite/silicon tandems. Our ultrathin transparent contact approach reduces indium consumption by approximately 80%, which is of importance to sustainable photovoltaics manufacturing4.

5.
Science ; 377(6603): 302-306, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35737811

RESUMO

The performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgFx interlayer with thickness of ~1 nanometer at the perovskite/C60 interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C60 from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.92 volts, an improved fill factor of 80.7%, and an independently certified stabilized PCE of 29.3% for a monolithic perovskite-silicon tandem solar cell ~1 square centimeter in area. The tandem retained ~95% of its initial performance after damp-heat testing (85°C at 85% relative humidity) for >1000 hours.

6.
Science ; 376(6588): 73-77, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35175829

RESUMO

If perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs) are to be commercialized, they must achieve long-term stability, which is usually assessed with accelerated degradation tests. One of the persistent obstacles for PSCs has been successfully passing the damp-heat test (85°C and 85% relative humidity), which is the standard for verifying the stability of commercial photovoltaic (PV) modules. We fabricated damp heat-stable PSCs by tailoring the dimensional fragments of two-dimensional perovskite layers formed at room temperature with oleylammonium iodide molecules; these layers passivate the perovskite surface at the electron-selective contact. The resulting inverted PSCs deliver a 24.3% PCE and retain >95% of their initial value after >1000 hours at damp-heat test conditions, thereby meeting one of the critical industrial stability standards for PV modules.

7.
ACS Appl Mater Interfaces ; 12(43): 48836-48844, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054156

RESUMO

It is well established that for organic photodetectors (OPDs) to compete with their inorganic counterparts, low dark currents at reverse bias must be achieved. Here, two rhodanine-terminated nonfullerene acceptors O-FBR and O-IDTBR are shown to deliver low dark currents at -2 V of 0.17 and 0.84 nA cm-2, respectively, when combined with the synthetically scalable polymer PTQ10 in OPD. These low dark currents contribute to the excellent sensitivity to low light of the detectors, reaching values of 0.57 µW cm-2 for PTQ10:O-FBR-based OPD and 2.12 µW cm-2 for PTQ10:O-IDTBR-based OPD. In both cases, this sensitivity exceeds that of a commercially available silicon photodiode. The responsivity of the PTQ10:O-FBR-based OPD of 0.34 AW-1 under a reverse bias of -2 V also exceeds that of a silicon photodiode. Meanwhile, the responsivity of the PTQ10:O-IDTBR of 0.03 AW-1 is limited by the energetic offset of the blend. The OPDs deliver high specific detectivities of 9.6 × 1012 Jones and 3.3 × 1011 Jones for O-FBR- and O-IDTBR-based blends, respectively. Both active layers are blade-coated in air, making them suitable for high-throughput methods. Finally, all three of the materials can be synthesized at low cost and on a large scale, making these blends good candidates for commercial OPD applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA