Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 24(33): 6142-6147, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35938941

RESUMO

Herein, we report for the first time a transition-metal-free frustrated Lewis pair (FLP) catalyzed CHF2 group migration from an oxygen atom to the neighboring nitrogen atom, which led to the synthesis of N-substituted benzimidazoles at room temperature with excellent yields, broad functional group tolerance, and a short reaction time. The oxygen-attached difluoromethane acted as a C1 source in the synthesis of N-substituted benzimidazoles in the presence of AlCl3 by cleaving one C-O bond and two C-F bonds, resulting in formation of two new C-N bonds.

2.
Chemosphere ; 305: 135461, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764107

RESUMO

Monoclinic BiVO4 (m-BiVO4) has been reported as promising phase for solar light driven photocatalysis. However, in the case of morphology guided BiVO4 with different synthetic conditions maintaining the m-BiVO4 phase remains a substantial challenge for achieving an efficient photocatalyst driven by solar light. Herein, a simple hydrothermal approach was used to produce well-defined template free m-BiVO4 dendrites with distinct branches for photo catalytically removal of organic pollutant and photocurrent generation. The development of monoclinic dendrite BiVO4 was confirmed after comprehensive structural, morphological, and optical examinations. FE-SEM images of m-BiVO4 revealed transformation of spherical to dendritic morphology with distinct branches by simply changing the HNO3 to NaOH ratios from 2:1 to 2:2, which are named as BVO 2-1 and BVO 2-2, respectively. The BVO 2-2 dendrites exhibited improved activity of 98% towards methylene blue (MB) photodegradation upon simulated solar light irradiation. The BVO 2-2 dendrites photoelectrode showed an outstanding photocurrent density of 1.4245 mAcm-2 than that of the BVO 2-1 spherical photoelectrode (0.7367 mAcm-2). Enhanced photocatalytic and photoelectrochemical action, could be ascribed to the unique morphological changes provides photoactive sites, harvest more light utilization together with higher separation of e-/h+ pairs. Furthermore, photocatalytic mechanism is investigated based on scavenger trapping agent, valence band XPS, UV Visible DRS and PL study. Our findings could pave the way for the development of dendritic nanostructure photocatalysts with improved photocatalytic activity.


Assuntos
Poluentes Ambientais , Vanadatos , Bismuto/química , Catálise , Dendritos , Luz , Vanadatos/química
3.
Chemosphere ; 286(Pt 1): 131577, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34298297

RESUMO

SnO2 quantum dots (SQD) were prepared by utilizing the soft-chemical approach. The formed SQD's were annealed in two kinds of environments: air and nitrogen (N2). Each annealing environment resulted in significant improvement in the performance of water oxidation and electrochemical supercapacitor performance. The specific capacitance of the SQD's under the N2 annealing process (SQD-N2) shows significantly better electrochemical performance. A specific capacitance of 79.13 F/g was achieved for SQD-N2 sample by applying a current of 1 mA, which was approximately 1.5 times greater than that of the pristine SQD's. A cycle stability of 99.4% over 5000 cycles was achieved by SQD-N2. The process of nitrogen annealing environment brings down the bandgap from 3.37 to 1.9 eV. The SQD-N2 sample shows the highest photocurrent over SQD and SQD-Air samples. From the LSV study, SQD-N2 shows the photocurrent density of 4.82 mA/cm2, which is 1.43 times greater than pristine SQD sample. The nitrogen-annealing environment provides the optimal environment to tune the average crystallite size and crystallinity nature of SQD's to improve the optical properties like bandgap to enhance the water oxidation and also electrochemical performance.


Assuntos
Pontos Quânticos , Capacitância Elétrica , Nitrogênio , Oxirredução , Água
4.
Chemosphere ; 268: 129346, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360940

RESUMO

At present, sustainable water supply and energy generation are the most important challenges faced by humankind globally. Thus, it is crucial to progress ecological techniques for sustainable removal of organic pollutants from wastewater and generation of hydrogen as an alternative to fossil fuels. In this study, zinc tungsten oxide (ZnWO4) nanorods, bismuth tungsten oxide (Bi2WO6) nanoflakes, and Bi2WO6/ZnWO4 (BO-ZO) nanocomposites were prepared via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, and electrochemical analyses were conducted to confirm the formation of the BO-ZO heterostructure. The structural and morphological analyses revealed that the ZnWO4 nanorods were moderately dispersed on the Bi2WO6 nanoflakes. The bandgap tuning of BO-ZO nanocomposite confirmed the establishment of the heterostructure with band bending properties. The BO-ZO nanocomposite could degrade 99.52% of methylene blue (MB) within 60 min upon solar-light illumination. The photoelectrochemical (PEC) measurement results showed that the BO-ZO nanocomposite showed low charge-transfer resistance and high photocurrent response with good stability. The BO-ZO photoanode showed a low charge-transfer resistance of 35.33 Ω and high photocurrent density of 0.1779 mA/cm2 in comparison with Ag/AgCl in a 0.1 M Na2SO3 electrolyte under solar-light illumination. The MB photocatalytic degradation and PEC water oxidation mechanisms of the nanocomposite were investigated.


Assuntos
Nanotubos , Óxido de Zinco , Bismuto , Catálise , Óxidos , Tungstênio , Zinco
5.
J Environ Manage ; 265: 110504, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275239

RESUMO

Herein we report the fabrication of novel Bi2WO6/ZnO heterostructured hybrids for organic contaminant degradation from wastewater and photoelectrochemical (PEC) water splitting upon solar illumination. The Bi2WO6/ZnO photocatalysts were synthesized using a simple and eco-friendly hydrothermal process without the support of any surfactants. From the photocatalytic experiments, heterostructured Bi2WO6/ZnO nanohybrid catalysts exhibited considerably better photocatalytic performance for rhodamine B (RhB) degradation under solar illumination. The BWZ-20 nanocomposite demonstrated superior photodegradation of RhB dye up to 99% in about 50 min. Furthermore, BWZ-20 photoelectrode showeda lower charge-transfer resistance than other samples prepared, suggesting its suitability for PEC water splitting. The photocurrent densities of Bi2WO6/ZnO photoelectrodes were evaluated under the solar irradiation. The BWZ-20 photoelectrode exhibited a significant photocurrent density (0.45 × 10-3A/cm2) at +0.3 V vs. Ag/AgCl, which was~1036-times higher than that of pure Bi2WO6, and ~4.8-times greater than the pure ZnO. Such improved photocatalytic and PEC activities are mainly attributed to the formation of an interface between ZnO and Bi2WO6, superior light absorption ability, low charge-transfer resistance, remarkable production of charge carriers, easy migration of charges, and suppression of the recombination of photogenerated charge carriers.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Luz , Luz Solar , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA