Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8011): 410-416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632404

RESUMO

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Assuntos
Bactérias , Bacteriófago T4 , DNA Glicosilases , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/imunologia , Bacteriófago T4/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Biblioteca Gênica , Metagenômica/métodos , Microbiologia do Solo , Replicação Viral
2.
Nature ; 625(7996): 797-804, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200316

RESUMO

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Potenciais da Membrana , Staphylococcus aureus , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Nucleotídeos Cíclicos/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Sistemas do Segundo Mensageiro , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA