RESUMO
HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.
Assuntos
Ésteres do Colesterol , Colesterol , Mitocôndrias , Membranas Mitocondriais , Sulfotransferases , Animais , Colesterol/metabolismo , Sulfotransferases/metabolismo , Sulfotransferases/genética , Mitocôndrias/metabolismo , Ésteres do Colesterol/metabolismo , Membranas Mitocondriais/metabolismo , Camundongos , Respiração Celular/fisiologia , Respiração Celular/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Renal reserve capacity may be compromised following recovery from acute kidney injury (AKI) and could be used to identify impaired renal function in the face of restored glomerular filtration rate (GFR) or plasma creatinine. To investigate the loss of hemodynamic renal reserve responses following recovery in a model of AKI, rats were subjected to left unilateral renal ischemia-reperfusion (I/R) injury and contralateral nephrectomy and allowed to recover for 5 wk. Some rats were treated 24 h post-I/R by hydrodynamic isotonic fluid delivery (AKI-HIFD) of saline through the renal vein, previously shown to improve recovery and inflammation relative to control rats that received saline through the vena cava (AKI-VC). At 5 wk after surgery, plasma creatinine and GFR recovered to levels observed in uninephrectomized sham controls. Baseline renal blood flow (RBF) was not different between AKI or sham groups, but infusion of l-arginine (7.5 mg/kg/min) significantly increased RBF in sham controls, whereas the RBF response to l-arginine was significantly reduced in AKI-VC rats relative to sham rats (22.6 ± 2.2% vs. 13.8 ± 1.8%, P < 0.05). RBF responses were partially protected in AKI-HIFD rats relative to AKI-VC rats (17.0 ± 2.2%) and were not significantly different from sham rats. Capillary rarefaction observed in AKI-VC rats was significantly protected in AKI-HIFD rats. There was also a significant increase in T helper 17 cell infiltration and interstitial fibrosis in AKI-VC rats versus sham rats, which was not present in AKI-HIFD rats. These data suggest that recovery from AKI results in impaired hemodynamic reserve and that associated CKD progression may be mitigated by HIFD in the early post-AKI period.NEW & NOTEWORTHY Despite the apparent recovery of renal filtration function following acute kidney injury (AKI) in rats, the renal hemodynamic reserve response is significantly attenuated, suggesting that clinical evaluation of this parameter may provide information on the potential development of chronic kidney disease. Treatments such as hydrodynamic isotonic fluid delivery, or other treatments in the early post-AKI period, could minimize chronic inflammation or loss of microvessels with the potential to promote a more favorable outcome on long-term function.
Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Animais , Hidrodinâmica , Creatinina , Ratos Sprague-Dawley , Rim , Injúria Renal Aguda/terapia , Hemodinâmica/fisiologia , Inflamação , Arginina , Modelos Animais de DoençasRESUMO
The proximal tubule (PT) is a nephron segment that is responsible for the majority of solute and water reabsorption in the kidney. Each of its sub-segments have specialized functions; however, little is known about the genes and proteins that determine the oxidative phosphorylation capacity of the PT sub-segments. This information is critical to understanding kidney function and will provide a comprehensive landscape of renal cell adaptations to injury, physiologic stressors, and development. This study analyzed three immortalized murine renal cell lines (PT S1, S2, and S3 segments) for protein content and compared them to a murine fibroblast cell line. All three proximal tubule cell lines generate ATP predominantly by oxidative phosphorylation while the fibroblast cell line is glycolytic. The proteomic data demonstrates that the most significant difference in proteomic signatures between the cell lines are proteins known to be localized in the nucleus followed by mitochondrial proteins. Mitochondrial metabolic substrate utilization assays were performed using the proximal tubule cell lines to determine substrate utilization kinetics thereby providing a physiologic context to the proteomic dataset. This data will allow researchers to study differences in nephron-specific cell lines, between epithelial and fibroblast cells, and between actively respiring cells and glycolytic cells. SIGNIFICANCE: Proteomic analysis of proteins expressed in immortalized murine renal proximal tubule cells was compared to a murine fibroblast cell line proteome. The proximal tubule segment specific cell lines: S1, S2 and S3 are all grown under conditions whereby the cells generate ATP by oxidative phosphorylation while the fibroblast cell line utilizes anaerobic glycolysis for ATP generation. The proteomic studies allow for the following queries: 1) comparisons between the proximal tubule segment specific cell lines, 2) comparisons between polarized epithelia and fibroblasts, 3) comparison between cells employing oxidative phosphorylation versus anaerobic glycolysis and 4) comparisons between cells grown on clear versus opaque membrane supports. The data finds major differences in nuclear protein expression and mitochondrial proteins. This proteomic data set will be an important baseline dataset for investigators who need immortalized renal proximal tubule epithelial cells for their research.
Assuntos
Rim , Proteômica , Camundongos , Animais , Túbulos Renais Proximais/metabolismo , Linhagem Celular , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenetic disorders in humans and is characterized by numerous fluid-filled cysts that grow slowly, resulting in end-stage renal disease in the majority of patients. Preclinical studies have indicated that treatment with low-dose thiazolidinediones, such as pioglitazone, decrease cyst growth in rodent models of PKD. METHODS: This Phase 1b cross-over study compared the safety of treatment with a low dose (15 mg) of the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone or placebo in PKD patients, with each treatment given for 1 year. The study monitored known side effects of PPAR-γ agonist treatment, including fluid retention and edema. Liver enzymes and risk of hypoglycemia were assessed throughout the study. As a secondary objective, the efficacy of low-dose pioglitazone was followed using a primary assessment of total kidney volume (TKV), blood pressure (BP) and kidney function. RESULTS: Eighteen patients were randomized and 15 completed both arms. Compared with placebo, allocation to pioglitazone resulted in a significant decrease in total body water as assessed by bioimpedance analysis {mean difference 0.16 Ω [95% confidence interval (CI) 0.24-2.96], P = 0.024} and no differences in episodes of heart failure, clinical edema or change in echocardiography. Allocation to pioglitazone led to no difference in the percent change in TKV of -3.5% (95% CI -8.4-1.4, P = 0.14), diastolic BP and microalbumin:creatinine ratio. CONCLUSIONS: In this small pilot trial in people with ADPKD but without diabetes, pioglitazone 15 mg was found to be as safe as placebo. Larger and longer-term randomized trials powered to assess effects on TKV are needed.
RESUMO
Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12-14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD.
Assuntos
Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Músculo Esquelético/patologia , Insuficiência Renal Crônica/patologiaRESUMO
Lowe syndrome (LS) is an X-linked developmental disease characterized by cognitive deficiencies, bilateral congenital cataracts and renal dysfunction. Unfortunately, this disease leads to the early death of affected children often due to kidney failure. Although this condition was first described in the early 1950s and the affected gene (OCRL1) was identified in the early 1990s, its pathophysiological mechanism is not fully understood and there is no LS-specific cure available to patients. Here we report two important signaling pathways affected in LS patient cells. While RhoGTPase signaling abnormalities led to adhesion and spreading defects as compared to normal controls, PI3K/mTOR hyperactivation interfered with primary cilia assembly (scenario also observed in other ciliopathies with compromised kidney function). Importantly, we identified two FDA-approved drugs able to ameliorate these phenotypes. Specifically, statins mitigated adhesion and spreading abnormalities while rapamycin facilitated ciliogenesis in LS patient cells. However, no single drug was able to alleviate both phenotypes. Based on these and other observations, we speculate that Ocrl1 has dual, independent functions supporting proper RhoGTPase and PI3K/mTOR signaling. Therefore, this study suggest that Ocrl1-deficiency leads to signaling defects likely to require combinatorial drug treatment to suppress patient phenotypes and symptoms.
Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Síndrome Oculocerebrorrenal/tratamento farmacológico , Monoéster Fosfórico Hidrolases/genética , Serina-Treonina Quinases TOR/genética , Linhagem Celular , Cílios/efeitos dos fármacos , Cílios/genética , Cílios/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proteínas rho de Ligação ao GTP/genéticaRESUMO
Primary cilia are sensory organelles that regulate cell cycle and signaling pathways. In addition to its association with cancer, dysfunction of primary cilia is responsible for the pathogenesis of polycystic kidney disease (PKD) and other ciliopathies. Because the association between cilia formation or length and cell cycle or division is poorly understood, we here evaluated their correlation in this study. Using Spectral Karyotyping (SKY) technique, we showed that PKD and the cancer/tumorigenic epithelial cells PC3, DU145, and NL20-TA were associated with abnormal ploidy. We also showed that PKD and the cancer epithelia were highly proliferative. Importantly, the cancer epithelial cells had a reduction in the presence and/or length of primary cilia relative to the normal kidney (NK) cells. We then used rapamycin to restore the expression and length of primary cilia in these cells. Our subsequent analyses indicated that both the presence and length of primary cilia were inversely correlated with cell proliferation. Collectively, our data suggest that restoring the presence and/or length of primary cilia may serve as a novel approach to inhibit cancer cell proliferation.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cílios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Sirolimo/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cílios/metabolismo , Cílios/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Sirolimo/uso terapêuticoRESUMO
Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.
Assuntos
Precondicionamento Isquêmico , Isocitrato Desidrogenase/genética , Rim/irrigação sanguínea , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Creatinina/sangue , Vetores Genéticos/administração & dosagem , Injeções Intravenosas , Isocitrato Desidrogenase/fisiologia , Túbulos Renais Proximais/citologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Recidiva , Transfecção , Regulação para CimaRESUMO
Colistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10-8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor ß (TGFß)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10-5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations.
Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Antibacterianos/efeitos adversos , Antibacterianos/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Colistina/efeitos adversos , Colistina/toxicidade , Resistência a Medicamentos/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI. Evidence suggests that disrupting leukocyte adhesion may prevent the impairment of renal microvascular perfusion and the heightened inflammatory response that exacerbate ischemic renal injury. We investigated the therapeutic potential of hydrodynamic isotonic fluid delivery (HIFD) to the left renal vein 24 hours after inducing moderate-to-severe unilateral IRI in rats. HIFD significantly increased hydrostatic pressure within the renal vein. When conducted after established AKI, 24 hours after I/R injury, HIFD produced substantial and statistically significant decreases in serum creatinine levels compared with levels in animals given an equivalent volume of saline via peripheral infusion (P<0.05). Intravital confocal microscopy performed immediately after HIFD showed improved microvascular perfusion. Notably, HIFD also resulted in immediate enhancement of parenchymal labeling with the fluorescent dye Hoechst 33342. HIFD also associated with a significant reduction in the accumulation of renal leukocytes, including proinflammatory T cells. Additionally, HIFD significantly reduced peritubular capillary erythrocyte congestion and improved histologic scores of tubular injury 4 days after IRI. Taken together, these results indicate that HIFD performed after establishment of AKI rapidly restores microvascular perfusion and small molecule accessibility, with improvement in overall renal function.
Assuntos
Hidratação/métodos , Hidrodinâmica , Soluções Isotônicas/administração & dosagem , Rim/irrigação sanguínea , Traumatismo por Reperfusão/terapia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de DoençaRESUMO
siRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6% ± 0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression.
RESUMO
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. RESULTS: We used the de Almeida laboratory's sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. CONCLUSIONS: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD's mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.
Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Transcriptoma , Adulto , Estudos de Casos e Controles , Linhagem Celular , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismoRESUMO
Skeletal muscle atrophy and impaired muscle function are associated with lower health-related quality of life, and greater disability and mortality risk in those with chronic kidney disease (CKD). However, the pathogenesis of skeletal dysfunction in CKD is unknown. We used a slow progressing, naturally occurring, CKD rat model (Cy/+ rat) with hormonal abnormalities consistent with clinical presentations of CKD to study skeletal muscle signaling. The CKD rats demonstrated augmented skeletal muscle regeneration with higher activation and differentiation signals in muscle cells (i.e. lower Pax-7; higher MyoD and myogenin RNA expression). However, there was also higher expression of proteolytic markers (Atrogin-1 and MuRF-1) in CKD muscle relative to normal. CKD animals had higher indices of oxidative stress compared to normal, evident by elevated plasma levels of an oxidative stress marker, 8-hydroxy-2' -deoxyguanosine (8-OHdG), increased muscle expression of succinate dehydrogenase (SDH) and Nox4 and altered mitochondria morphology. Furthermore, we show significantly higher serum levels of myostatin and expression of myostatin in skeletal muscle of CKD animals compared to normal. Taken together, these data show aberrant regeneration and proteolytic signaling that is associated with oxidative stress and high levels of myostatin in the setting of CKD. These changes likely play a role in the compromised skeletal muscle function that exists in CKD.
Assuntos
Músculo Esquelético/patologia , Miostatina/sangue , Insuficiência Renal Crônica/patologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Masculino , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Estresse Oxidativo , Ratos , Regeneração , Insuficiência Renal Crônica/metabolismo , Transdução de SinaisRESUMO
In autosomal dominant polycystic kidney disease (ADPKD), cysts accumulate and progressively impair renal function. Mutations in PKD1 and PKD2 genes are causally linked to ADPKD, but how these mutations drive cell behaviors that underlie ADPKD pathogenesis is unknown. Human ADPKD cysts frequently express cadherin-8 (cad8), and expression of cad8 ectopically in vitro suffices to initiate cystogenesis. To explore cell behavioral mechanisms of cad8-driven cyst initiation, we developed a virtual-tissue computer model. Our simulations predicted that either reduced cell-cell adhesion or reduced contact inhibition of proliferation triggers cyst induction. To reproduce the full range of cyst morphologies observed in vivo, changes in both cell adhesion and proliferation are required. However, only loss-of-adhesion simulations produced morphologies matching in vitro cad8-induced cysts. Conversely, the saccular cysts described by others arise predominantly by decreased contact inhibition, that is, increased proliferation. In vitro experiments confirmed that cell-cell adhesion was reduced and proliferation was increased by ectopic cad8 expression. We conclude that adhesion loss due to cadherin type switching in ADPKD suffices to drive cystogenesis. Thus, control of cadherin type switching provides a new target for therapeutic intervention.
Assuntos
Caderinas/metabolismo , Simulação por Computador/estatística & dados numéricos , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Cistos/metabolismo , Humanos , Rim/metabolismo , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Transdução de SinaisRESUMO
The ability of hydrogen peroxide (H2O2) to increase paracellular permeability of renal epithelial cell monolayers was examined and the role of occludin in this regulation was investigated. H2O2 treatment increased the paracellular movement of calcein, a marker for the leak pathway permeability, across monolayers of two renal epithelial cell lines, MDCK and LLC-PK1, in a concentration-dependent manner. At the same concentrations, H2O2 did not alter transepithelial resistance (TER) nor increase cell death. The magnitude of the H2O2-induced increase in leak pathway permeability was inversely related to cellular occludin protein content. H2O2 treatment did not produce any major change in total cellular content or Triton X-100-soluble or -insoluble fraction content of occludin protein. Occludin protein staining at the tight junction region was diminished following H2O2 treatment. The most dramatic effect of H2O2 was on the dynamic mobility of GFP-occludin into the tight junction region. H2O2 treatment slowed lateral movement of GFP-occludin into the tight junction region but not on the apical membrane. Further, removal of the cytoplasmic C-terminal region of occludin protein eliminated the effect of H2O2 on GFP-occludin lateral movement into the tight junction region. An increase in the mobile fraction of GFP-occludin was associated with a loss of response to H2O2. These data indicate that the H2O2-induced increase in renal epithelial cell paracellular permeability is mediated, at least in part, through occludin protein, possibly through a slowing of the rate of occludin movement into the tight junction region.
Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Peróxido de Hidrogênio/farmacocinética , Ocludina/metabolismo , Animais , Cães , Células Epiteliais/efeitos dos fármacos , Rim , Células LLC-PK1 , Células Madin Darby de Rim Canino , Suínos , Junções Íntimas/metabolismoRESUMO
PURPOSE: Chronic pain is a prominent feature of autosomal dominant polycystic kidney disease that is difficult to treat and manage, often resulting in a decrease in quality of life. Understanding the underlying anatomy of renal innervation and the various etiologies of pain that occur in autosomal dominant polycystic kidney disease can help guide proper treatments to manage pain. Reviewing previously studied treatments for pain in autosomal dominant polycystic kidney disease can help characterize treatment in a stepwise fashion. MATERIALS AND METHODS: We performed a literature search of the etiology and management of pain in autosomal dominant polycystic kidney disease and the anatomy of renal innervation using PubMed® and Embase® from January 1985 to April 2014 with limitations to human studies and English language. RESULTS: Pain occurs in the majority of patients with autosomal dominant polycystic kidney disease due to renal, hepatic and mechanical origins. Patients may experience different types of pain which can make it difficult to clinically confirm its etiology. An anatomical and histological evaluation of the complex renal innervation helps in understanding the mechanisms that can lead to renal pain. Understanding the complex nature of renal innervation is essential for surgeons to perform renal denervation. The management of pain in autosomal dominant polycystic kidney disease should be approached in a stepwise fashion. Acute causes of renal pain must first be ruled out due to the high incidence in autosomal dominant polycystic kidney disease. For chronic pain, nonopioid analgesics and conservative interventions can be used first, before opioid analgesics are considered. If pain continues there are surgical interventions such as renal cyst decortication, renal denervation and nephrectomy that can target pain produced by renal or hepatic cysts. CONCLUSIONS: Chronic pain in patients with autosomal dominant polycystic kidney disease is often refractory to conservative, medical and other noninvasive treatments. There are effective surgical procedures that can be performed when more conservative treatments fail. Laparoscopic cyst decortication has been well studied and results in the relief of chronic renal pain in the majority of patients. In addition, renal denervation has been used successfully and could be performed concurrently with cyst decortication. Nephrectomy should be reserved for patients with intractable pain and renal failure when other modalities have failed.
Assuntos
Dor Crônica/terapia , Rim/inervação , Manejo da Dor , Rim Policístico Autossômico Dominante/complicações , Árvores de Decisões , HumanosRESUMO
Dichloroacetate (DCA) is a toxicant by-product from the chlorination disinfection process for municipal water. The levels would not affect people with normal renal and liver function. However, people with impaired renal or liver function may have an increased susceptibility to DCA toxicity as those are the organs affected by DCA. People (and rodents) with polycystic kidney disease (PKD) are polyuric, drink more fluids, and have both renal and liver pathology. In PKD, renal tubules and biliary epithelial cells proliferate to form cysts, which can eventually cause renal and/or liver dysfunction. Therefore, PKD may be a predisposing condition with an increased sensitivity to DCA toxicity. PCK rats are an orthologous model of human autosomal recessive PKD and were treated with 75 mg/l DCA in their drinking water. Male and female PCK and male Sprague-Dawley rats were treated from 4 to 8 wk of age, after which the severity of the renal and liver pathology induced by DCA were assessed. Only male PCK rats were adversely affected by DCA treatment, with an increase in the severity of renal cystic disease evinced by an increase in cystic enlargement and proteinuria. In conclusion, the chlorination byproduct DCA may adversely affect those with a preexisting renal disease, especially those who are polydipsic, like those with PKD.
Assuntos
Ácido Dicloroacético/toxicidade , Água Potável/efeitos adversos , Rim Policístico Autossômico Recessivo/induzido quimicamente , Animais , Feminino , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Cystic kidneys and vascular aneurysms are clinical manifestations seen in patients with polycystic kidney disease, a cilia-associated pathology (ciliopathy). Survivin overexpression is associated with cancer, but the clinical pathology associated with survivin downregulation or knockout has never been studied before. The present studies aim to examine whether and how cilia function (Pkd1 or Pkd2) and structure (Tg737) play a role in cystic kidney and aneurysm through survivin downregulation. METHODS AND RESULTS: Cysts and aneurysms from polycystic kidney disease patients, Pkd mouse, and zebrafish models are characterized by chromosome instability and low survivin expression. This triggers cytokinesis defects and formation of nuclear polyploidy or aneuploidy. In vivo conditional mouse and zebrafish models confirm that survivin gene deletion in the kidneys results in a cystic phenotype. As in hypertensive Pkd1, Pkd2, and Tg737 models, aneurysm formation can also be induced in vascular-specific normotensive survivin mice. Survivin knockout also contributes to abnormal oriented cell division in both kidney and vasculature. Furthermore, survivin expression and ciliary localization are regulated by flow-induced cilia activation through protein kinase C, Akt and nuclear factor-κB. Circumventing ciliary function by re-expressing survivin can rescue polycystic kidney disease phenotypes. CONCLUSIONS: For the first time, our studies offer a unifying mechanism that explains both renal and vascular phenotypes in polycystic kidney disease. Although primary cilia dysfunction accounts for aneurysm formation and hypertension, hypertension itself does not cause aneurysm. Furthermore, aneurysm formation and cyst formation share a common cellular and molecular pathway involving cilia function or structure, survivin expression, cytokinesis, cell ploidy, symmetrical cell division, and tissue architecture orientation.
Assuntos
Aneurisma/genética , Proteínas Inibidoras de Apoptose/genética , Doenças Renais Císticas/genética , Túbulos Renais Coletores/citologia , Rim Policístico Autossômico Dominante/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Aneuploidia , Aneurisma/metabolismo , Aneurisma/patologia , Animais , Divisão Celular/genética , Cílios/patologia , Regulação para Baixo/genética , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Fenótipo , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Cultura Primária de Células , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Survivina , Urotélio/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismoRESUMO
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv-/- mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv-/- mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin.
Assuntos
Actinas/fisiologia , Córtex Renal/citologia , Mitose/fisiologia , Fatores de Transcrição/metabolismo , Animais , Ensaios de Migração Celular , Células HEK293 , Células HeLa , Humanos , Córtex Renal/embriologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Fatores de Transcrição/genéticaRESUMO
Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10-50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys.