Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(9): e2304454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115757

RESUMO

Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.


Assuntos
Osso e Ossos , Colágeno , Animais , Ovinos , Osteoblastos , Osso Cortical
2.
Langmuir ; 39(27): 9273-9289, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379248

RESUMO

The structure-property relationship of rhamnolipids, RLs, well-known microbial bioamphiphiles (biosurfactants), is explored in detail by coupling cryogenic transmission electron microscopy (cryo-TEM) and both ex situ and in situ small-angle X-ray scattering (SAXS). The self-assembly of three RLs with reasoned variation of their molecular structure (RhaC10, RhaC10C10, and RhaRhaC10C10) and a rhamnose-free C10C10 fatty acid is studied in water as a function of pH. It is found that RhaC10 and RhaRhaC10C10 form micelles in a broad pH range and RhaC10C10 undergoes a micelle-to-vesicle transition from basic to acid pH occurring at pH 6.5. Modeling coupled to fitting SAXS data allows a good estimation of the hydrophobic core radius (or length), the hydrophilic shell thickness, the aggregation number, and the surface area per RL. The essentially micellar morphology found for RhaC10 and RhaRhaC10C10 and the micelle-to-vesicle transition found for RhaC10C10 are reasonably well explained by employing the packing parameter (PP) model, provided a good estimation of the surface area per RL. On the contrary, the PP model fails to explain the lamellar phase found for the protonated RhaRhaC10C10 at acidic pH. The lamellar phase can only be explained by values of the surface area per RL being counterintuitively small for a di-rhamnose group and folding of the C10C10 chain. These structural features are only possible for a change in the conformation of the di-rhamnose group between the alkaline and acidic pH.

3.
Soft Matter ; 19(3): 366-377, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36508178

RESUMO

Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water. A great majority of SAFiN gels are described by an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. Here, fibrillation of a biobased glycolipid bolaamphiphile is triggered by Ca2+ or Ag+ ions which are added to its diluted micellar phase. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and ß-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but generally not known for SAFiN. This work focuses on the strength of the SAFIN gels, their fast recovery after applying a mechanical stimulus (strain) and their unusual resistance to temperature, studied by coupling rheology to small angle X-ray scattering (rheo-SAXS) using synchrotron radiation. The Ca2+-based hydrogel maintains its properties up to 55 °C, while the Ag+-based gel shows a constant elastic modulus up to 70 °C, without the appearance of any gel-to-sol transition temperature. Furthermore, the glycolipid is obtained by fermentation from natural resources (glucose and rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.


Assuntos
Glicolipídeos , Hidrogéis , Conformação Proteica em Folha beta , Espalhamento a Baixo Ângulo , Temperatura , Glicolipídeos/química , Difração de Raios X , Hidrogéis/química , Reologia
4.
Biomacromolecules ; 24(1): 19-32, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573937

RESUMO

Hydrogels are widespread soft materials, which can be used in a wide range of applications. The control over the viscoelastic properties of the gel is of paramount importance. Ongoing environmental issues have raised the consumer's concern toward the use of more sustainable materials, including hydrogels. However, are greener materials compatible with high functionality? In a safe-by-design approach, this work demonstrates that functional hydrogels with in situ responsivity of their elastic properties by external stimuli can be developed from entirely "sustainable" components, a biobased amphiphile and biopolymers (gelatin, chitosan, and alginate). The bioamphiphile is a stimuli-responsive glycolipid obtained by microbial fermentation, which can self-assemble into fibers, but also micelles or vesicles, in water under high dilution and by a rapid variation of the stimuli. The elastic properties of the bioamphiphile-/biopolymer-interpenetrated hydrogels can be modulated by selectively triggering the phase transition of the glycolipid and/or the biopolymer inside the gel by mean of temperature or pH.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/química , Biopolímeros/química , Quitosana/química , Alginatos/química , Água
5.
Soft Matter ; 19(3): 378-393, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36562421

RESUMO

Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and ß-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The ß-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.


Assuntos
Hidrogéis , Tensoativos , Hidrogéis/química , Conformação Proteica em Folha beta , Peso Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Micelas , Glicolipídeos
6.
Biomacromolecules ; 24(1): 33-42, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36576429

RESUMO

Controlling the viscoelastic properties of hydrogels is a challenge for many applications. Low molecular weight gelators (LMWGs) like bile salts and glycolipids and biopolymers like chitosan and alginate are good candidates for developing fully biobased hybrid hydrogels that combine the advantages of both components. Biopolymers lead to enhanced mechanics, while LMWGs add functionality. In this work, hybrid hydrogels are composed of biopolymers (gelatin, chitosan, and alginate) and microbial glycolipid bioamphiphiles, known as biosurfactants. Besides their biocompatibility and natural origin, bioamphiphiles can present chameleonic behavior, as pH and ions control their phase diagram in water around neutrality under strongly diluted conditions (<5 wt%). The glycolipid used in this work behaves like a surfactant (micellar phase) at high pH or like a phospholipid (vesicle phase) at low pH. Moreover, at neutral-to-alkaline pH in the presence of calcium, it behaves like a gelator (fiber phase). The impact of each of these phases on the elastic properties of biopolymers is explored by means of oscillatory rheology, while the hybrid structure is studied by small angle X-ray scattering. The micellar and vesicular phases reduce the elastic properties of the hydrogels, while the fiber phase has the opposite effect; it enhances the hydrogel's strength by forming an interpenetrated biopolymer-LMWG network.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/química , Quitosana/química , Fase S , Biopolímeros/química , Alginatos/química , Glicolipídeos/química
7.
J Colloid Interface Sci ; 630(Pt A): 404-415, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265342

RESUMO

Chameleons are stunning reptiles which change colour according to the surrounding environment. In astrophysics, chameleons are particles whose mass varies in the surrounding matter. Here, we show the chameleonic self-assembly behavior of a low molecular weight (LMW) amphiphile, a broad class of molecules widely studied for several decades. Their ability to self-assemble in water make them both fascinating and useful compounds for a number of applications. Under thermodynamic conditions, their thermotropic and lyotropic phase behavior is generally predicted in relation to their molecular shape, as seen for classical head-tail molecules like surfactants or phospholipids. However, many exceptions do exist, either when amphiphiles have unconventional shapes, e.g., bolaform or gemini, or when they contain functional groups which undergo specific interactions such as H-bonding or π-π stacking. In excess water, surfactants form micelles, phospholipids form vesicles or lamellar phases, and functional amphiphiles often form micelles or fibers. Here, we show the multiphase behavior, much richer and more unpredictable than what it is known for most amphiphiles, of a biobased glycolipid produced by the yeast S. bombicola ΔugtB1. In excess water and within a narrow pH range around neutrality, this compound assembles into micelles, uni- and multilamellar vesicles, lamellae and fibers, simply as a function of changing pH, temperature and counterions. This rich phase behavior is not only interesting in itself, it also generates a number of diverse biocompatible and biodegradable soft self-assembled materials like hydrogels, complex coacervates and drug carriers.


Assuntos
Glicolipídeos , Água , Glicolipídeos/química , Água/química , Micelas , Tensoativos/química , Termodinâmica
8.
J Phys Chem B ; 126(49): 10528-10542, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36475558

RESUMO

Biological amphiphiles are molecules with a rich phase behavior. Micellar, vesicular, and even fibrillar phases can be found for the same molecule by applying a change in pH or by selecting the appropriate metal ion. The rich phase behavior paves the way toward a broad class of soft materials, from carriers to hydrogels. The present work contributes to understanding the fibrillation of a microbial glycolipid, glucolipid G-C18:1, produced by Starmerella bombicola ΔugtB1 and characterized by a micellar phase at alkaline pH and a vesicular phase at acidic pH. Fibrillation and prompt hydrogelation is triggered by adding either alkaline earth, Ca2+, or transition metal, Ag+, Fe2+, Al3+, ions to a G-C18:1 micellar solution. A specifically designed apparatus coupled to a synchrotron SAXS beamline allows the performing of simultaneous cation- and pH-resolved in situ monitoring of the morphological evolution from spheroidal micelles to crystalline fibers, when Ca2+ is employed, or to wormlike aggregates, when Fe2+ or Al3+ solutions are employed. The fast reactivity of Ag+ and the crystallinity of Ca2+-induced fibers suggest that fibrillation is driven by direct metal-ligand interactions, while the shape transition from spheroidal to elongated micelles with Fe2+ or Al3+ rather suggest charge screening between the lipid and the hydroxylated cation species.


Assuntos
Glicolipídeos , Micelas , Glicolipídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Cátions
9.
Langmuir ; 38(48): 14574-14587, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36410028

RESUMO

Lipid nanotube-vesicle networks are important channels for intercellular communication and transport of matter. Experimentally observed in neighboring mammalian cells but also reproduced in model membrane systems, a broad consensus exists on their formation and stability. Lipid membranes must be composed of at least two molecular components, each stabilizing low (generally a phospholipid) and high curvatures. Strong anisotropy or enhanced conical shape of the second amphiphile is crucial for the formation of nanotunnels. Anisotropic driving forces generally favor nanotube protrusions from vesicles. In this work, we report the unique case of topologically connected nanotubes-vesicles obtained in the absence of directional forces, in single-molecule membranes, composed of an anisotropic bolaform glucolipid, above its melting temperature, Tm. Cryo-TEM and fluorescence confocal microscopy show the interconnection between vesicles and nanotubes in a single-phase region, between 60 and 90 °C under diluted conditions. Solid-state NMR demonstrates that the glucolipid can assume two distinct configurations, head-head and head-tail. These arrangements, seemingly of comparable energy above the Tm, could explain the existence and stability of the topologically connected vesicles and nanotubes, which are generally not observed for classical single-molecule phospholipid-based membranes above their Tm.


Assuntos
Nanotubos , Humanos , Animais , Nanotubos/química , Fosfolipídeos/química , Nanotecnologia , Membranas , Microscopia de Fluorescência , Mamíferos
10.
Appl Microbiol Biotechnol ; 106(18): 6003-6016, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965289

RESUMO

Sophorolipids are glycolipid biosurfactants consisting of a carbohydrate sophorose head with a fatty acid tail and exist in either an acidic or lactonic form. Sophorolipids are gaining interest as potential cancer chemotherapeutics due to their inhibitory effects on a range of tumour cell lines. Currently, most anti-cancer studies reporting the effects of sophorolipids have focused on lactonic preparations with the effects of acidic sophorolipids yet to be elucidated. We produced a 94% pure acidic sophorolipid preparation which proved to be non-toxic to normal human colonic and lung cells. In contrast, we observed a dose-dependent reduction in viability of colorectal cancer lines treated with the same preparation. Acidic sophorolipids induced apoptosis and necrosis, reduced migration, and inhibited colony formation in all cancer cell lines tested. Furthermore, oral administration of 50 mg kg-1 acidic sophorolipids over 70 days to Apcmin+/- mice was well tolerated and resulted in an increased haematocrit, as well as reducing splenic size and red pulp area. Oral feeding did not affect tumour numbers or sizes in this model. This is the first study to show that acidic sophorolipids dose-dependently and specifically reduces colon cancer cell viability in addition to reducing tumour-associated bleeding in the Apcmin+/- mouse model. KEY POINTS: • Acidic sophorolipids are produced by yeast species such as Starmerella bombicola. • Acidic sophorolipids selectively killed colorectal cells with no effect on healthy gut epithelia. • Acidic sophorolipids reduced tumour-associated gut bleed in a colorectal mouse model.


Assuntos
Neoplasias Colorretais , Ácidos Oleicos , Animais , Neoplasias Colorretais/tratamento farmacológico , Glicolipídeos/farmacologia , Hematócrito , Humanos , Camundongos
11.
Langmuir ; 38(28): 8564-8574, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793459

RESUMO

Biological amphiphiles derived from natural resources are presently being investigated in the hope that they will someday replace current synthetic surfactants, which are known pollutants of soils and water resources. Sophorolipids constitute one of the main classes of glycosylated biosurfactants that have attracted interest because they are synthesized by non-pathogenic yeasts from glucose and vegetable oils at high titers. In this work, the self-assembly properties of several sophorolipids in water at high concentrations (20-80 wt %), a range so far mostly uncharted, have been investigated by polarized-light microscopy and X-ray scattering. Some of these compounds were found to show lyotropic liquid-crystalline behavior as they display lamellar or hexagonal columnar mesophases. X-ray scattering data shows that the structure of the lamellar phase is almost fully interdigitated, which is likely due to the packing difference between the bulky hydrophilic tails and the more compact aliphatic chains. A tentative representation of the molecular organization of the columnar phase is also given. Moreover, some of these compounds display thermotropic liquid-crystalline behavior, either pure or in aqueous mixtures. In addition, small domains of the lamellar phase can easily be aligned by applying onto them a moderate a.c. electric field, which is a rather unusual feature for lyotropic liquid crystals. Altogether, our work explored the self-assembly liquid-crystalline behavior of sophorolipids at high concentration, which could shed light on the conditions of their potential industrial applications as well as on their biological function.


Assuntos
Cristais Líquidos , Interações Hidrofóbicas e Hidrofílicas , Cristais Líquidos/química , Ácidos Oleicos/química , Tensoativos/química , Água/química
12.
Biotechnol Adv ; 54: 107788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34166752

RESUMO

Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.


Assuntos
Glicolipídeos , Saccharomycetales , Animais , Abelhas , Ácidos Oleicos , Saccharomycetales/genética , Tensoativos
13.
Philos Trans A Math Phys Eng Sci ; 379(2206): 20200343, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34334020

RESUMO

Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process. pH-resolved in situ small-angle X-ray scattering (SAXS) shows a continuous micelle-to-fibre transition, characterized by an enhanced core-shell contrast between pH 9 and pH 7 and micellar fusion into a flat membrane between pH 7 and pH 6, approximately. Below pH 6, homogeneous, infinitely long nanofibres form by peeling off the membranes. Eventually, the nanofibre network spontaneously forms a thixotropic hydrogel with fast recovery rates after applying an oscillatory strain amplitude out of the linear viscoelastic regime: after being submitted to strain amplitudes during 5 min, the hydrogel recovers about 80% and 100% of its initial elastic modulus after, respectively, 20 s and 10 min. Finally, the strength of the hydrogel depends on the medium's final pH, with an elastic modulus fivefold higher at pH 3 than at pH 6. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.


Assuntos
Hidrogéis , Ácido Palmítico , Ácidos Oleicos , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Biomacromolecules ; 22(6): 2740-2753, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34027656

RESUMO

Cellulose nanocrystals (CNCs) have been widely studied as fillers to form reinforced nanocomposites with a wide range of applications, including the biomedical field. Here, we evaluated the possibility to combine them with fibrinogen and obtain fibrin hydrogels with improved mechanical stability as potential cellular scaffolds. In diluted conditions at a neutral pH, it was evidenced that fibrinogen could adsorb on CNCs in a two-step process, favoring their alignment under flow. Composite hydrogels could be prepared from concentrated fibrinogen solutions and nanocrystals in amounts up to 0.3 wt %. CNCs induced a significant modification of the initial fibrin fibrillogenesis and final fibrin network structure, and storage moduli of all nanocomposites were larger than those of pure fibrin hydrogels. Moreover, optimal conditions were found that promoted muscle cell differentiation and formation of long myotubes. These results provide original insights into the interactions of CNCs with proteins with key physiological functions and offer new perspectives for the design of injectable fibrin-based formulations.


Assuntos
Celulose , Nanopartículas , Fibrina , Fibras Musculares Esqueléticas , Nanogéis
15.
J Colloid Interface Sci ; 600: 23-36, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000475

RESUMO

HYPOTHESIS: Polyelectrolyte-surfactant complexes (PESCs) have long been employed as oil-in-water (o/w) emulsions stabilizers, but never in the structure of colloidal complex coacervates providing a Pickering effect. The complexed state of PESCs could make them unsuitable o/w Pickering emulsifiers, which instead require a balance between colloidal structure and stability, amphiphilicity and wettability. Here we hypothesize that PESCs coacervates are efficient Pickering stabilizers. Instead of classical surfactants, we employ sophorolipid (SL) biosurfactants, atypical anionic/neutral stimuli-responsive biosurfactants. Despite their tunable charge and mild amphiphilic character, they can be used in combination with cationic/neutral polyelectrolytes (chitosan, CHL, or poly-l-lysine, PLL) to form PESC coacervates for the development of biobased, but also pH-switchable, Pickering emulsions. EXPERIMENTS: Aqueous solutions of SL-CHL (or SL-PLL) complex coacervates are emulsified with dodecane. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy under cryogenic conditions (cryo-SEM) demonstrate the Pickering effect, while optical microscopy and oscillatory rheology respectively assess the emulsion formation and relative viscoelastic properties. FINDINGS: Both SL-CHL and SL-PLL PESCs stabilize o/w emulsions up to Φoil of 0.7 only in the pH region of complex coacervation (6 < pH < 9): outside this range, phase separation occurs. Rheology shows a typical solid-like response and mechanical recovery upon applying large deformations. CLSM and cryo-SEM highlight a colloidal structure, associated to the complex coacervates, of the oil/water interface and suggest a Pickering effect. These findings demonstrate the Pickering effect from PESC coacervates and the possibility to use biobased and biocompatible components, with application potential in cosmetics, food science, or oil recovery.


Assuntos
Tensoativos , Emulsões , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Polieletrólitos
16.
Soft Matter ; 17(8): 2302-2314, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480918

RESUMO

Silk fibroin (SF) based hydrogels have been exploited for years for their inherent biocompatibility and favorable mechanical properties which makes them interesting for biotechnology applications. In this study we investigate silk based composite hydrogels where pH-sensitive, anionic biosurfactant assemblies (sophorolipids SL-C18 : 1 and SL-C18 : 0), are employed to improve the present properties of SF. Results suggest that the presence of SL surfactant assemblies leads to faster gelling of SF by accelerating the refolding from random coil to ß-sheet as shown by infrared and UV-visible spectroscopy. Small angle neutron scattering (SANS) including contrast matching studies show that SF and SL assemblies coexist in a fibrillary network that is, in the case of SL-C18 : 0, interpenetrating. The resulting overall network structure in composite gels is slightly more affected by SL-C18 : 1 than by SL-C18 : 0, whereas the structure of both SF and surfactant assemblies remains unchanged. No disassembly of SL surfactant structures is observed, which gives a new perspective on SF-surfactant interactions. The hydrophobic effect within SF is favored in the presence of SL, leading to faster refolding of SF into ß-sheet conformation. The presented composite gels, being an interpenetrating network of which one compound (SL-C18 : 0) can be tweaked by pH, open an interesting option towards improved workability and stimuli responsive mechanical properties of SF based hydrogels with possible applications in controlled cell culture and tissue engineering or drug delivery. The presented SANS analysis approach has the potential to be expanded to other protein-surfactant systems and composite hydrogels.


Assuntos
Fibroínas , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Seda , Engenharia Tecidual
17.
Microb Biotechnol ; 14(1): 147-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249753

RESUMO

The demand for microbially produced surface-active compounds for use in industrial processes and products is increasing. As such, there has been a comparable increase in the number of publications relating to the characterization of novel surface-active compounds: novel producers of already characterized surface-active compounds and production processes for the generation of these compounds. Leading researchers in the field have identified that many of these studies utilize techniques are not precise and accurate enough, so some published conclusions might not be justified. Such studies lacking robust experimental evidence generated by validated techniques and standard operating procedures are detrimental to the field of microbially produced surface-active compound research. In this publication, we have critically reviewed a wide range of techniques utilized in the characterization of surface-active compounds from microbial sources: identification of surface-active compound producing microorganisms and functional testing of resultant surface-active compounds. We have also reviewed the experimental evidence required for process development to take these compounds out of the laboratory and into industrial application. We devised this review as a guide to both researchers and the peer-reviewed process to improve the stringency of future studies and publications within this field of science.


Assuntos
Tensoativos
18.
Langmuir ; 36(30): 8839-8857, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32702994

RESUMO

Polyelectrolyte-surfactant complexes (PESCs) are important soft colloids with applications in the fields of personal care, cosmetics, pharmaceutics, and much more. If their phase diagrams have long been studied under pseudoequilibrium conditions, and often inside the micellar or vesicular regions, understanding the effect of nonequilibrium conditions, applied at phase boundaries, on the structure of PESCs generates an increasing interest. In this work we cross the micelle-vesicle and micelle-fiber phase boundaries in an isocompositional surfactant-polyelectrolyte aqueous system through a continuous and rapid variation of pH. We employ two microbial glycolipid biosurfactants in the presence of polyamines, both systems being characterized by their responsiveness to pH. We show that complex coacervates (Co) are always formed in the micellar region of both glycolipids' phase diagram and that their phase behavior drives the PESC stability and structure. However, for glycolipid forming single-wall vesicles, we observe an isostructural and isodimensional transition between complex coacervates and a multilamellar walls vesicle (MLWV) phase. For the fiber-forming glycolipid, on the contrary, the complex coacervate disassembles into free polyelectrolyte coexisting with the equilibrium fiber phase. Last but not least, this work also demonstrates the use of microbial glycolipid biosurfactants in the development of sustainable PESCs.

19.
J Colloid Interface Sci ; 580: 493-502, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711200

RESUMO

Multilamellar wall vesicles (MLWV) are an interesting class of polyelectrolyte-surfactant complexes (PESCs) for wide applications ranging from house-care to biomedical products. If MLWV are generally obtained by a polyelectrolyte-driven vesicle agglutination under pseudo-equilibrium conditions, the resulting phase is often a mixture of more than one structure. In this work, we show that MLWV can be massively and reproductively prepared from a recently developed method involving a pH-stimulated phase transition from a complex coacervate phase (Co). We employ a biobased pH-sensitive microbial glucolipid biosurfactant in the presence of a natural, or synthetic, polyamine (chitosan, poly-l-Lysine, polyethylene imine, polyallylamine). In situ small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) show a systematic isostructural and isodimensional transition from the Co to the MLWV phase, while optical microscopy under polarized light experiments and cryo-TEM reveal a massive, virtually quantitative, presence of MLWV. Finally, the multilamellar wall structure is not perturbed by filtration and sonication, two typical methods employed to control size distribution in vesicles. In summary, this work highlights a new, robust, non-equilibrium phase-change method to develop biobased multilamellar wall vesicles, promising soft colloids with applications in the field of personal care, cosmetics and pharmaceutics among many others.


Assuntos
Tensoativos , Concentração de Íons de Hidrogênio , Polieletrólitos , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Soft Matter ; 16(10): 2528-2539, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32076696

RESUMO

Lipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase instead of fibrillar networks. The mechanical properties of these materials are controlled by defects, induced by local accumulation of a polymer or surfactant in a classical lipid bilayer. Herein we report a new class of lipid lamellar hydrogels composed of one single bolaform glycosylated lipid obtained by fermentation. The lipid is self-organized into flat interdigitated membranes, stabilized by electrostatic repulsive forces and stacked in micrometer-sized lamellar domains. The defects in the membranes and the interconnection of the lamellar domains are responsible, from the nano- to the micrometer scales, for the elastic properties of the hydrogels. The lamellar structure is probed by combining small angle X-ray and neutron scattering (SAXS, SANS), the defect-rich lamellar domains are visualized by polarized light microscopy while the elastic properties are studied by oscillatory rheology. The latter show that both storage G' and loss G'' moduli scale as a weak power-law of the frequency, that can be fitted with fractional rheology models. The hydrogels possess rheo-thinning properties with second-scale recovery. We also show that ionic strength is not only necessary, as one could expect, to control the interactions in the lamellar phase but, most importantly, it directly controls the elastic properties of the lamellar gels.


Assuntos
Glucose/análogos & derivados , Glicolipídeos/química , Hidrogéis/química , Leveduras/química , Elasticidade , Concentração Osmolar , Reologia , Eletricidade Estática , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA