RESUMO
BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS: Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS: Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION: The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.
Assuntos
Interpretação de Imagem Assistida por Computador , Síndrome de Marfan , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Humanos , Velocidade do Fluxo Sanguíneo , Adulto , Masculino , Síndrome de Marfan/fisiopatologia , Feminino , Adulto Jovem , Estudos de Casos e Controles , Angiografia por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos de Viabilidade , Hemodinâmica , Imagem de Perfusão/métodos , Meios de Contraste/administração & dosagem , Fatores de Tempo , Pessoa de Meia-IdadeRESUMO
This study aims to evaluate the accuracy and reliability of the cardiac and respiratory signals extracted from Pilot Tone (PT) in patients clinically referred for cardiovascular MRI. Twenty-three patients were scanned under free-breathing conditions using a balanced steady-state free-precession real-time (RT) cine sequence on a 1.5T scanner. The PT signal was generated by a built-in PT transmitter integrated within the body array coil, and retrospectively processed to extract respiratory and cardiac signals. For comparison, ECG and BioMatrix (BM) respiratory sensor signals were also synchronously recorded. To assess the performances of PT, ECG, and BM, cardiac and respiratory signals extracted from the RT cine images were used as the ground truth. The respiratory motion extracted from PT correlated positively with the image-derived respiratory signal in all cases and showed a stronger correlation (absolute coefficient: 0.95 ± 0.09) than BM (0.72 ± 0.24). For the cardiac signal, PT trigger jitter (standard deviation of PT trigger locations relative to ECG triggers) ranged from 6.6 to 83.3 ms, with a median of 21.8 ms. The mean absolute difference between the PT and corresponding ECG cardiac cycle duration was less than 5% of the average ECG RR interval for 21 out of 23 patients. We did not observe a significant linear dependence (p > 0.28) of PT delay and PT jitter on the patients' BMI or cardiac cycle duration. This study demonstrates the potential of PT to monitor both respiratory and cardiac motion in patients clinically referred for cardiovascular MRI.
Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Movimento (Física)RESUMO
The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. To evaluate the performance of PTC triggering in a comprehensive CMR exam. Fifteen volunteers and 20 patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
Assuntos
Meios de Contraste , Gadolínio , Humanos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Cafeína , Espectroscopia de Ressonância Magnética , Imagem Cinética por Ressonância MagnéticaRESUMO
Background: The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. Purpose: To evaluate the performance of PTC triggering in a comprehensive CMR exam. Methods: Fifteen volunteers and twenty patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Results: Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. Conclusion: PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
RESUMO
PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.
Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Eletrocardiografia , Processamento de Imagem Assistida por Computador/métodos , Respiração , Imageamento Tridimensional/métodosRESUMO
PURPOSE: In this work, we integrated the pilot tone (PT) navigation system into a reconstruction framework for respiratory and cardiac motion-resolved 5D flow. We tested the hypotheses that PT would provide equivalent respiratory curves, cardiac triggers, and corresponding flow measurements to a previously established self-gating (SG) technique while being independent from changes to the acquisition parameters. METHODS: Fifteen volunteers and 9 patients were scanned with a free-running 5D flow sequence, with PT integrated. Respiratory curves and cardiac triggers from PT and SG were compared across all subjects. Flow measurements from 5D flow reconstructions using both PT and SG were compared to each other and to a reference electrocardiogram-gated and respiratory triggered 4D flow acquisition. Radial trajectories with variable readouts per interleave were also tested in 1 subject to compare cardiac trigger quality between PT and SG. RESULTS: The correlation between PT and SG respiratory curves were 0.95 ± 0.06 for volunteers and 0.95 ± 0.04 for patients. Heartbeat duration measurements in volunteers and patients showed a bias to electrocardiogram measurements of, respectively, 0.16 ± 64.94 ms and 0.01 ± 39.29 ms for PT versus electrocardiogram and of 0.24 ± 63.68 ms and 0.09 ± 32.79 ms for SG versus electrocardiogram. No significant differences were reported for the flow measurements between 5D flow PT and from 5D flow SG. A decrease in the cardiac triggering quality of SG was observed for increasing readouts per interleave, whereas PT quality remained constant. CONCLUSION: PT has been successfully integrated in 5D flow MRI and has shown equivalent results to the previously described 5D flow SG technique, while being completely acquisition-independent.
Assuntos
Coração , Imageamento por Ressonância Magnética , Eletrocardiografia , Coração/diagnóstico por imagem , Humanos , Movimento (Física) , Respiração , Taxa RespiratóriaRESUMO
For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
Assuntos
Aprendizado Profundo , Eletrocardiografia , Coração/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Movimento (Física)RESUMO
OBJECTIVES: The aim of this study was to develop a method for tracking respiratory motion throughout full MR or PET/MR studies that requires only minimal additional hardware and no modifications to the sequences. MATERIALS AND METHODS: Patient motion that is caused by respiration affects the quality of the signal of the individual radiofrequency receive coil elements. This effect can be detected as a modulation of a monofrequent signal that is emitted by a small portable transmitter placed inside the bore (Pilot Tone). The frequency is selected such that it is located outside of the frequency band of the actual MR readout experiment but well within the bandwidth of the radiofrequency receiver, that is, the oversampling area. Temporal variations of the detected signal indicate motion. After extraction of the signal from the raw data, principal component analysis was used to identify respiratory motion. The approach and potential applications during MR and PET/MR examinations that rely on a continuous respiratory signal were validated with an anthropomorphic, PET/MR-compatible motion phantom as well as in a volunteer study. RESULTS: Respiratory motion detection and correction were presented for MR and PET data in phantom and volunteer studies. The Pilot Tone successfully recovered the ground-truth respiratory signal provided by the phantom. CONCLUSIONS: The presented method provides reliable respiratory motion tracking during arbitrary imaging sequences throughout a full PET/MR study. All results can directly be transferred to MR-only applications as well.