RESUMO
Imbalances in electrolyte concentrations can have severe consequences, but accurate and accessible measurements could improve patient outcomes. The current measurement method based on blood tests is accurate but invasive and time-consuming and is often unavailable for example in remote locations or an ambulance setting. In this paper, we explore the use of deep neural networks (DNNs) for regression tasks to accurately predict continuous electrolyte concentrations from electrocardiograms (ECGs), a quick and widely adopted tool. We analyze our DNN models on a novel dataset of over 290,000 ECGs across four major electrolytes and compare their performance with traditional machine learning models. For improved understanding, we also study the full spectrum from continuous predictions to a binary classification of extreme concentration levels. Finally, we investigate probabilistic regression approaches and explore uncertainty estimates for enhanced clinical usefulness. Our results show that DNNs outperform traditional models but model performance varies significantly across different electrolytes. While discretization leads to good classification performance, it does not address the original problem of continuous concentration level prediction. Probabilistic regression has practical potential, but our uncertainty estimates are not perfectly calibrated. Our study is therefore a first step towards developing an accurate and reliable ECG-based method for electrolyte concentration level prediction-a method with high potential impact within multiple clinical scenarios.
Assuntos
Eletrocardiografia , Eletrólitos , Eletrocardiografia/métodos , Humanos , Eletrólitos/sangue , Redes Neurais de Computação , Análise de Regressão , Aprendizado de MáquinaRESUMO
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Assuntos
Antioxidantes , Cristalino , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Olho/metabolismo , Olho/patologia , Estresse Oxidativo , Cristalino/metabolismo , Cristalino/patologiaRESUMO
Novel energy-storage solutions are necessary for the transition from fossil to renewable energy sources. Auspicious candidates are so-called molecular solar thermal (MOST) systems. In our study, we investigate the surface chemistry of a derivatized norbornadiene/quadricyclane molecule pair. By using suitable push-pull substituents, a bathochromic shift of the absorption onset is achieved, allowing a greater overlap with the solar spectrum. Specifically, the adsorption and thermally induced reactions of 2-carbethoxy-3-phenyl-norbornadiene/quadricyclane are assessed on Pt(111) and Ni(111) as model catalyst surfaces by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS). Comparison of the respective XP spectra enables the distinction of the energy-rich molecule from its energy-lean counterpart and allows qualitative information on the adsorption motifs to be derived. Monitoring the quantitative cycloreversion between 140 and 230â K spectroscopically demonstrates the release of the stored energy to be successfully triggered on Pt(111). Heating to above 300â K leads to fragmentation of the molecular framework. On Ni(111), no conversion of the energy-rich compound takes place. The individual decomposition pathways of the two isomers begin at 160 and 180â K, respectively. Pronounced desorption of almost the entire surface coverage only occurs for the energy-lean molecule on Ni(111) above 280â K; this suggests weakly bound species. The correlation between adsorption motif and desorption behavior is important for applications of MOST systems in heterogeneously catalyzed processes.
RESUMO
The front cover artwork is provided by the group of Prof. Dr. Christian Papp at Physical Chemistry II of FAU Erlangen-Nürnberg and FU Berlin. The image shows the isomerization reaction of the molecule pair 2,3-dicyano-norbornadiene/quadricyclane as potential molecular solar thermal (MOST) energy storage system. Read the full text of the Research Article at 10.1002/cphc.202200199.
RESUMO
Molecular solar thermal (MOST) systems are a promising approach for the introduction of sustainable energy storage solutions. We investigated the feasibility of the dicyano-substituted norbornadiene/quadricyclane molecule pair on Ni(111) for catalytic model studies. This derivatization is known to lead to a desired bathochromic shift of the absorption maximum of the parent compound. In our experiments further favorable properties were found: At low temperatures, both molecules adsorb intact without any dissociation. In situ temperature-programmed HR-XPS experiments reveal the conversion of (CN)2 -quadricyclane to (CN)2 -norbornadiene under energy release between 175 and 260â K. The absence of other surface species due to side reactions indicates full isomerization. Further heating leads to the decomposition of the molecular framework into smaller carbonaceous fragments above 290â K and finally to amorphous structures, carbide and nitride above 400â K. DFT calculations gave insights into the adsorption geometries. (CN)2 -norbornadiene is expected to interact stronger with the surface, with flat configurations being favorable. (CN)2 -quadricyclane exhibits smaller adsorption energies with negligible differences for flat and side-on geometries. Simulated XP spectra are in good agreement with experimental findings further supporting the specific spectroscopic fingerprints for both valence isomers.
RESUMO
The reactivity of iron nanocluster arrays on h-BN/Rh(111) was studied using inâ situ high-resolution X-ray photoelectron spectroscopy. The morphology and reactivity of the iron nanoclusters (Fe-NCs) were investigated by CO adsorption. On-top and hollow/edge sites were determined to be the available adsorption sites on the as-prepared Fe-NCs and CO dissociation was observed at 300â K. C- and O-precovered Fe-NCs showed no catalytic activity towards CO dissociation because the hollow/edge sites were blocked by the C and O atoms. Therefore, these adsorption sites were identified to be the most active sites of the Fe-NCs.
RESUMO
We present detailed studies on the covalent adsorption of molecular oxygen and atomic hydrogen on the hexagonal boron nitride (h-BN) nanomesh on Rh(111). The functionalization of this two-dimensional (2D) material was investigated under ultra-high vacuum conditions using synchrotron radiation-based inâ situ high-resolution X-ray photoelectron spectroscopy, temperature-programmed X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We are able to provide a deep insight into the adsorption behavior and thermal stability of oxygen and hydrogen on h-BN/Rh(111). Oxygen functionalization was achieved via a supersonic molecular beam while hydrogen functionalization was realized using an atomic hydrogen source. Adsorption of the respective species was observed to occur selectively in the pores of h-BN leading to spatially defined modification of the 2D layer. The adsorption of the observed molecular oxygen species was found to be an activated process that requires high-energy oxygen molecules. Upon heating to 700â K, oxygen functionalization was observed to be almost reversible except for small amounts of boron oxides evolving due to the reaction of oxygen with the 2D material. Hydrogen functionalization of h-BN/Rh(111) was fully reversed upon heating to about 640â K.
RESUMO
We present well-ordered Pt nanocluster arrays supported on the h-BN/Rh(111) Moiré as a model system for an ethylene dehydrogenation catalyst. Thereby, the h-BN nanomesh serves as a chemically inert eggbox-like template for clusters with a narrow size distribution. The thermal evolution of ethylene is investigated by synchrotron-based high-resolution in situ x-ray photoelectron spectroscopy on the Pt nanoclusters. We compare our results with data on Pt(111) and Pt(355). Interestingly, the Pt nanoclusters and Pt(355) behave very similarly. Both open a new reaction pathway via vinylidene in addition to the route via ethylidyne known for Pt(111). Due to the importance of coking in ethylene dehydrogenation on Pt catalysts, we also studied C2H4 adsorption and decomposition on carbon precovered Pt nanoclusters. While the amount of adsorbed ethylene decreases linearly with the carbon coverage, we found that edge sites are more affected than facet sites and that the vinylidene reaction pathway is effectively suppressed by carbon residues.
RESUMO
BACKGROUND AND PURPOSE: Oral anticoagulation prevents thromboembolism in atrial fibrillation. Factor Xa inhibitors, like edoxaban, are known to reduce inflammation and proliferation of smooth muscle cells, while vitamin K antagonism can cause vascular calcific damage. The influence of edoxaban compared to warfarin on vascular remodeling, atherosclerosis and arteriogenesis is unknown. EXPERIMENTAL APPROACH: Apolipoprotein E knockout (ApoE -/-) mice were fed cholesterol-rich diet alone (control, co), with warfarin+vitamin K1 (warf) or with edoxaban (Edo) for 8 weeks. After 6 weeks, femoral artery ligation was performed. KEY RESULTS: There was no difference in hind-limb perfusion restoration between the three groups after 14 days (Co 0.36 ± 0.05 vs. Warf 0.39 ± 0.09 (p = .39), Co vs. Edo 0.51 ± 0.06 (p = .089), Warf vs. Edo (p = .83)) after ligation. Immuno-histologically, there was no difference in smooth muscle cell count in both hindlimbs between the three groups or in the amount of perivascular macrophages in collateral-bearing hindlimb tissue. Edoxaban showed the lowest amount of plaque tissue in the aortic sinus tissue (Co 74 ± 11% vs. Edo 62 ± 12% (p = .024), Co vs. Warf 69 ± 14% (p = .30), Edo vs. Warf (p = .14)) as well as the least amount of fibrosis (Co 3.1 ± 0.9% vs. Edo 1.7 ± 0.6% (p = .027), Co vs. Warf 4.1 ± 0.7% (p = .081), Edo vs. Warf (p < .001)). No difference in mRNA content of inflammatory cytokines in muscle tissue or spleen was detected between the three groups. CONCLUSION AND IMPLICATIONS: These data suggest that treatment with edoxaban unlike warfarin prevents vascular maladaptive remodeling, which may be clinically important.
Assuntos
Anticoagulantes/farmacologia , Aterosclerose/tratamento farmacológico , Circulação Colateral/efeitos dos fármacos , Inibidores do Fator Xa/farmacologia , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Placa Aterosclerótica , Piridinas/farmacologia , Tiazóis/farmacologia , Remodelação Vascular/efeitos dos fármacos , Varfarina/farmacologia , Animais , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Modelos Animais de Doenças , Fibrose , Membro Posterior , Isquemia/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoERESUMO
Among other N-heterocycles, indole and its substituted derivatives, such as methylindoles, are considered promising Liquid Organic Hydrogen Carriers (LOHCs) for the storage of renewable energy. We used X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and density-functional theory (DFT) to investigate the low temperature adsorption and consecutive dehydrogenation reaction during heating of 2-methylindole, 2-methylindoline, and 2-methyloctahydroindole on Pt(111) and their viability as the LOHC system. In the photoemission experiments, for all Hx-2-methylindoles, we find deprotonation at the NH bond starting between 240 and 300 K, resulting in a 2-methylindolide species. Simultaneously or before this reaction step, the dehydrogenation of 2-methyloctahydroindole via 2-methylindoline and 2-methylindole intermediates is observed. For 2-methyloctahydroindole, we also find π-allyl intermediates above 230 K. Starting at â¼390 K, decomposition of the remaining 2-methylindolide species takes place under the conditions of our surface science experiments. DFT calculations give insight into the relative energies of the various species, reaction intermediates, and their isomers both in the gas phase and on the Pt(111) surface.
RESUMO
The h-BN nanomesh on Rh(111) is used as eggbox-like template for the formation of arrays of Pt nanoclusters with a narrow size distribution. Nanoclusters with sizes from 1 up to 50 atoms are prepared simultaneously in a wedge-like structure by depositing a coverage gradient on the h-BN nanomesh, and thus can be investigated under identical conditions. We studied the preparation and properties of these Pt nanoclusters of different size in situ by high-resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy. For a Pt coverage of 0.1 ML, all pores of the h-BN nanomesh are filled with nanoclusters with a remarkably uniform cluster size of ≈12 Pt atoms per pore, and high stability up to 400 K. Above 0.2 ML Pt, the clusters are less stable. The coverage dependent analysis shows that for Pt coverages below 0.1 ML, the number of nanoclusters is smaller - and the number of empty pores higher - than expected for a simple hit and stick mechanism. We assign this behavior to an initially higher mobility of the Pt atoms in a hot precursor state.
RESUMO
Together with borazine, ammonia borane is a prominent precursor molecule for the formation of hexagonal boron nitride, which is of high interest as a 2D-material and graphene analog. Ammonia borane is also a possible solid hydrogen carrier for renewable energies with high storage density. Using X-ray photoelectron spectroscopy and temperature-programmed desorption, we investigated low-temperature adsorption and dehydrogenation during heating of borazine and ammonia borane on Ni(111) to form h-BN. For borazine, we observe the formation of disordered boron nitride above 300 K, which starts to form hexagonal boron nitride above 600 K. Ammonia borane shows multiple dehydrogenation steps at the boron and nitrogen atoms up to 300 K. This results in various BHxNHy species, including borazine-like intermediates, before the formation of disordered boron nitride and finally hexagonal boron nitride, analogous to the borazine decomposition.
RESUMO
Alloy catalysts have, in many cases, superior properties compared to their single metal counterparts. To gain deeper insights, we used graphene-supported bimetallic nanocluster arrays as a model system. We investigated the site occupation and the dynamic behavior of the metal distribution during adsorption and thermal treatment of CO layers on PdPt alloy nanocluster arrays supported on the graphene/Rh(111) Moiré. We find that the adsorption of CO combined with heating to 550 K leads to a rearrangement of the surface atoms, resulting in all the edge sites of the nanoclusters being occupied by Pd atoms. At the same time, Pt gets enriched at the surface.
RESUMO
Indole derivatives were recently proposed as potential liquid organic hydrogen carriers (LOHC) for storage of renewable energies. In this work, we have investigated the adsorption, dehydrogenation and degradation mechanisms in the indole/indoline/octahydroindole system on Pt(111). We have combined infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS) and DFT calculations. Indole multilayers show a crystallization transition at 200â K, in which the molecules adopt a strongly tilted orientation, before the multilayer desorbs at 220â K. For indoline, a less pronounced restructuring transition occurs at 150â K and multilayer desorption is observed at 200â K. Octahydroindole multilayers desorb already at 185â K, without any indication for restructuring. Adsorbed monolayers of all three compounds are stable up to room temperature and undergo deprotonation at the NH bond above 300â K. For indoline, the reaction is followed by partial dehydrogenation at the 5-membered ring, leading to the formation of a flat-lying di-σ-indolide in the temperature range from 330-390â K. Noteworthy, the same surface intermediate is formed from indole. In contrast, the reaction of octahydroindole with Pt(111) leads to the formation of a different intermediate, which originates from partial dehydrogenation of the 6-membered ring. Above 390â K, all three compounds again form the same strongly dehydrogenated and partially decomposed surface species.
RESUMO
INTRODUCTION: Modern sensor technology makes it possible to collect vast amounts of environmental, behavioural and health data. These data are often linked to contextual information on for example exposure sources which is separately collected with considerable lag time, leading to complications in assessing transient and/or highly spatially variable environmental exposures. Context-Sensitive Ecological Momentary Assessments1 (CS-EMAs) could be used to address this. We present a case study using radiofrequency-electromagnetic fields (RF-EMF) exposure as an example for implementing CS-EMA in environmental research. METHODS: Participants were asked to install a custom application on their own smartphone and to wear an RF-EMF exposimeter for 48h. Questionnaires were triggered by the application based on a continuous data stream from the exposimeter. Triggers were divided into four categories: relative and absolute exposure levels, phone calls, and control condition. After the two days of use participants filled in an evaluation questionnaire. RESULTS: 74% of all CS-EMAs were completed, with an average time of 31s to complete a questionnaire once it was opened. Participants reported minimal influence on daily activities. There were no significant differences found between well-being and type of RF-EMF exposure. CONCLUSIONS: We show that a CS-EMA based method could be used in environmental research. Using several examples involving environmental stressors, we discuss both current and future applications of this methodology in studying potential health effects of environmental factors.
Assuntos
Avaliação Momentânea Ecológica , Smartphone , Adolescente , Adulto , Campos Eletromagnéticos , Exposição Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ondas de Rádio , Projetos de Pesquisa , Inquéritos e Questionários , Adulto JovemRESUMO
We have investigated the surface chemistry of the polycyclic valence-isomer pair norbornadiene (NBD) and quadricyclane (QC) on Pt(111). The NBD/QC system is considered to be a prototype for energy storage in strained organic compounds. By using a multimethod approach, including UV photoelectron, high-resolution X-ray photoelectron, and IR reflection-absorption spectroscopic analysis and DFT calculations, we could unambiguously identify and differentiate between the two molecules in the multilayer phase, which implies that the energy-loaded QC molecule is stable in this state. Upon adsorption in the (sub)monolayer regime, the different spectroscopies yielded identical spectra for NBD and QC at 125 and 160â K, when multilayer desorption takes place. This behavior is explained by a rapid cycloreversion of QC to NBD upon contact with the Pt surface. The NBD adsorbs in a η2 :η1 geometry with an agostic Pt-H interaction of the bridgehead CH2 subunit and the surface. Strong spectral changes are observed between 190 and 220â K because the hydrogen atom that forms the agostic bond is broke. This reaction yields a norbornadienyl intermediate species that is stable up to approximately 380â K. At higher temperatures, the molecule dehydrogenates and decomposes into smaller carbonaceous fragments.
RESUMO
We have investigated the electrochemically triggered cycloreversion of quadricyclane (QC) to norbornadiene (NBD), a system that holds the potential to combine both energy storage and conversion in a single molecule. Unambiguous voltammetric traces are obtained for pure NBD and pure QC, the latter a strained polycyclic isomer of the former. The difference in redox potentials is smaller than the energy difference between the neutral molecules. This is owing to a significant energy difference between the corresponding radical cations, as demonstrated by density functional theory (DFT) calculations. The vibrational modes of each pure compound are characterized experimentally in the fingerprint region and identified by DFT methods. Thermal and electrochemical transformations of NBD and QC are monitored inâ situ by IR spectroelectrochemical methods. The kinetics of the cycloreversion of QC to NBD, which is catalyzed by oxidizing equivalents, can be controlled by an applied electrode potential, which implies the ability to adjust in real time the release of thermal power stored in QC.
Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Norbornanos/química , Temperatura , Eletroquímica , Cinética , Modelos Moleculares , Conformação Molecular , Teoria QuânticaRESUMO
The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H12-NEC), dodecahydro-N-propylcarbazole (H12-NPC), and dodecahydro-N-butylcarbazole (H12-NBC), on Pt(111) and on Al2O3-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C-N bond of the alkyl chain starting at 380-390 K. On Pt/Al2O3, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.
RESUMO
Phagocytosis and killing of Streptococcus pneumoniae was compared in blood-derived wild-type (WT) and Toll-like receptor 2 (TLR2)-deficient (TLR2-/-) polymorphonuclear leukocytes (PMN). Phagocytosis of green fluorescent protein-transformed pneumococci was delayed in TLR2-/- PMN. These cells exhibited also a lower oxidative bactericidal activity against S. pneumoniae than WT PMN, suggesting that TLR2 modulates bacterial clearance in PMN.
Assuntos
Granulócitos/microbiologia , Fagocitose , Streptococcus pneumoniae/imunologia , Receptor 2 Toll-Like/deficiência , Animais , Células Cultivadas , Granulócitos/química , Granulócitos/imunologia , Proteínas de Fluorescência Verde/análise , Camundongos , Camundongos Knockout , Oxirredução , Fagocitose/genética , Receptor 2 Toll-Like/genéticaRESUMO
The phagocyte pattern recognition receptor Toll-like receptor 2 (TLR2) and the multi-receptor adaptor MyD88 contribute to the reduction of bacterial load in infections with intra- and extra-cellular Gram-positive bacteria. Their mechanism of antibacterial action is mostly unresolved but evident in vivo by an increased pathogen burden in infected TLR2-/- and MyD88-/- compared to C57BL/6 wild type (wt) mice. We had previously observed higher bacterial numbers in brains of TLR2-/- than of wt mice with meningitis. Here we study bacteria-phagocyte interaction by comparing S. pneumoniae distribution and localization in wt and TLR2-/- brain by confocal microscopy using a green fluorescent protein-transformed encapsulated S. pneumoniae (C5017). Colony-forming units were similarly distributed in TLR2-/- and wt mice and exclusively localized in meninges and ventricles. Bacteria were more abundant in ventricles, in and around TLR2-/- than wt GLT1v+ plexus choroideus epithelial cells. S. pneumoniae were also found in and around Gr-1+ granulocytes, but never in F4/80+ macrophages, Iba1+ microglia, GFAP+ astrocytes, Meca-31+ endothelial cells or Neun+ neurons of either mouse strain. The results indicate that TLR2 does not change bacterial distribution, but may contribute to antibacterial defense by modulating S. pneumoniae adherence and uptake in plexus epithelia.