Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 128: 105133, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217291

RESUMO

PURPOSE: In distraction osteogenesis (DO) of long bones, new bone tissue is distracted to lengthen limbs or reconstruct bone defects. However, mechanical boundary conditions in human application such as arising forces are mainly based on limited empirical data. Our aim was the numerical determination of the callus distraction force (CDF) and the total distraction force (TDF) during DO in the tibia of adults to advance the understanding of callus tissue behavior and optimize DO procedures. METHOD: We implemented a mathematical model based on an animal experiment to enable the calculation of forces arising while distracting callus tissue, excluding the influence of surrounding soft tissue (muscles, skin etc.). The CDF progression for the distraction period was calculated using the implemented model and varying distraction parameters (initial gap, area, step size, time interval, length). Further, we estimated the CDF based on reported forces in humans and compared the results to our model predictions. In addition, we calculated the TDF based on our CDF predictions in combination with reported resisting forces due to soft tissue presence in human cadavers. Finally, we compared the progressions to in vivo TDF measurements for validation. RESULTS: Due to relaxation, a peak and resting CDF is observable for each distraction step. Our biomechanical results show a non-linear degressive increase of the resting and peak CDF at the beginning and a steady non-linear increase thereafter. The calculated resting and peak CDF in the tibial metaphysis ranged from 0.00075 to 0.0089 N and 0.22-2.6 N at the beginning as well as 20-25 N and 70-75 N at the end of distraction. The comparison to in vivo data showed the plausibility of our predictions and resulted in a 10-33% and 10-23% share of resting CDF in the total resting force for bone transport and elongation, respectively. Further, the percentage of peak CDF in total peak force was found to be 29-58% and 27-55% for bone transport and elongation, respectively. Moreover, our TDF predictions were valid based on the comparison to in vivo forces and resulted in a degressive increase from 6 to 125 N for the peak TDF and from 5 to 76 N for the resting TDF. CONCLUSION: Our approach enables the estimation of forces arising due to the distraction of callus tissue in humans and results in plausible force progressions as well as absolute force values for the callus distraction force during DO. In combination with measurements of resisting forces due to the presence of soft tissue, the total distraction force in DO may also be evaluated. We thus propose the application of this method to approximate the behavior of mechanical callus properties during DO in humans as an alternative to in vivo measurements.


Assuntos
Osteogênese por Distração , Animais , Calo Ósseo/fisiologia , Humanos , Perna (Membro) , Extremidade Inferior , Osteogênese/fisiologia , Tíbia/fisiologia , Tíbia/cirurgia
2.
Ann Anat ; 234: 151656, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33278581

RESUMO

BACKGROUND: In distraction osteogenesis (DO) of long bones, new bone tissue is formed and distracted to lengthen limbs or reconstruct bone defects. However, certain anthropometric quantities relevant for biomechanical modelling of DO are unknown, such as areas where new bone tissue is formed. We developed a novel method to facilitate the determination of these distraction areas (DA), which we applied in the tibia and fibula of adults for longitudinal and transverse DO to advance knowledge of anatomical boundary conditions. METHODS: CT data sets of 21 adult human tibiae and 24 fibulae were selected for investigation. Volumetric models were created utilizing image segmentation. The DA for longitudinal DO was determined in a CAD environment using the total bone cross section in the proximal, central and distal diaphysis of the tibia and fibula. Additionally, the medullary canal area was determined in the fibula. Furthermore, we measured the total DA and medullary canal DA for transverse distraction using a longitudinally split fibula with an osteotomy length of 8, 12, 16 and 20 cm. The osteotomy plane was oriented in medial and anteromedial direction. Finally, Spearman analyses were conducted to assess the correlation between bone length and DA. RESULTS: For longitudinal DO, the mean total DAs were 878, 535 and 482 mm2 in the tibia and 132, 153, 124 mm2 in the fibula for the proximal, central and distal diaphysis, respectively. Regarding transverse distraction, the mean total DAs for a medial and anteromedial osteotomy plane orientation were 962, 1423, 1868 and 2306 mm2 as well as 925, 1387, 1844, 2279 mm2 for an osteotomy length of 8, 12, 16 and 20 cm, respectively. Weak, positive, and non-significant correlations were observed when correlating bone length and DA in the tibia and fibula. CONCLUSIONS: Quantification of DAs and hence distracted callus tissue in DO advances anatomical knowledge and improves biomechanical modelling by adding a parameter which cannot be approximated based on bone length.


Assuntos
Osteogênese por Distração , Tíbia , Adulto , Fíbula/diagnóstico por imagem , Humanos , Osteogênese , Osteotomia , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA