Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(39): 51844-51857, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129044

RESUMO

Passive sampling is a crucial method for evaluating concentrations of hydrophilic organic compounds in the aquatic environment, but it is insufficiently understood to what extent passive samplers capture the intermittent emissions that frequently occur for this group of compounds. In the present study, silicone sheets and styrene-divinyl benzene-reversed phase sulfonated extraction disks with and without a polyethersulfone membrane were exposed under semi-field conditions in a 31 m3 flume at three different flow velocities. Natural processes and spiking/dilution measures caused aqueous concentrations to vary strongly with time. The data were analyzed using two analytical models that account for these time-variable concentrations: a sampling rate model and a diffusion model. The diffusion model generally gave a better fit of the data than the sampling rate model, but the difference in residual errors was quite small (median errors of 19 vs. 25% for silicone and 22 vs. 25% for SDB-RPS samplers). The sampling rate model was therefore adequate enough to evaluate the time-integrative capabilities of the samplers. Sampler performance was best for SDB-RPS samplers with a polyethersulfone membrane, despite the occurrence of lag times for some compounds (0.1 to 0.4 days). Sampling rates for this design also spanned a narrower range (80 to 110 mL/day) than SDB-RPS samplers without a membrane (100 to 660 mL/day). The effect of biofouling was similar for all compounds and was consistent with a biofouling layer thickness of 150 µm.


Assuntos
Monitoramento Ambiental , Interações Hidrofóbicas e Hidrofílicas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sulfonas/química , Sulfonas/análise , Polímeros
2.
Environ Sci Pollut Res Int ; 28(9): 11697-11707, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33438128

RESUMO

In this study, three different passive sampling receiving phases were evaluated, with a main focus on the comparability of established styrene-divinylbenzene reversed phase sulfonated (SDB-RPS) sampling phase from Empore™ (E-RPS) and novel AttractSPE™ (A-RPS). Furthermore, AttractSPE™ hydrophilic-lipophilic balance (HLB) disks were tested. To support sampling phase selection for ongoing monitoring needs, it is important to have information on the characteristics of alternative phases. Three sets of passive samplers (days 1-7, days 8-14, and days 1-14) were exposed to a continuously exchanged mixture of creek and rainwater in a stream channel system under controlled conditions. The system was spiked with nine pesticides in two peak scenarios, with log KOW values ranging from approx. - 1 to 5. Three analytes were continuously spiked at a low concentration. All three sampling phases turned out to be suitable for the chosen analytes, and, in general, uptake rates were similar for all three materials, particularly for SDB-RPS phases. Exceptions concerned bentazon, where E-RPS sampled less than 20% compared with the other phases, and nicosulfuron, where HLB sampled noticeably more than both SDB-RPS phases. All three phases will work for environmental monitoring. They are very similar, but differences indicate one cannot just use literature calibration data and transfer these from one SDB phase to another, though for most compounds, it may work fine.


Assuntos
Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Interações Hidrofóbicas e Hidrofílicas , Praguicidas/análise , Rios , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 740: 139905, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563868

RESUMO

Prevalent findings of anticoagulant rodenticide (AR) residues in liver tissue of freshwater fish recently emphasized the existence of aquatic exposure pathways. Thus, a comprehensive wastewater treatment plant and surface water monitoring campaign was conducted at two urban catchments in Germany in 2018 and 2019 to investigate potential emission sources of ARs into the aquatic environment. Over several months, the occurrence and fate of all eight ARs authorized in the European Union as well as two pharmaceutical anticoagulants was monitored in a variety of aqueous, solid, and biological environmental matrices during and after widespread sewer baiting with AR-containing bait. As a result, sewer baiting in combined sewer systems, besides outdoor rodent control at the surface, was identified as a substantial contributor of these biocidal active ingredients in the aquatic environment. In conjunction with heavy or prolonged precipitation during bait application in combined sewer systems, a direct link between sewer baiting and AR residues in wastewater treatment plant influent, effluent, and the liver of freshwater fish was established. Moreover, study results confirmed insufficient removal of anticoagulants during conventional wastewater treatment and thus indirect exposure of aquatic organisms in receiving streams via tertiary treated effluents and combined sewer overflows. Nevertheless, further research is required to determine the ecological implications and risks for aquatic organisms as well as fish-eating predators from chronic AR exposure at environmentally relevant concentrations.


Assuntos
Rodenticidas , Animais , Anticoagulantes , Monitoramento Ambiental , Alemanha , Controle de Roedores , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA