Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37811828

RESUMO

Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.


Assuntos
Elétrons , Periplasma , Transporte de Elétrons , Oxirredução , Periplasma/metabolismo , Metais , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Molecules ; 25(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419359

RESUMO

The spin-spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates.


Assuntos
Campos Magnéticos , Imãs/química , Metais/química , Adsorção , Conformação Proteica em alfa-Hélice , Estereoisomerismo
3.
Sci Rep ; 9(1): 17192, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748587

RESUMO

Circular dichroism (CD) signals revealed in some materials may arise from different origins during measurements. Magnetic field dependent CD (MCD) emanating from the spin-polarized band provides direct insight into the spin-spin interband transitions in magnetic materials. On the contrary, natural CD effects which are artefactual signals resulting from the linear polarization (LP) components during the polarization modulation with a photo-elastic modulator in anisotropic polymer systems were usually observed. There is no simple method to reliably distinguish MCD effect due to spin polarized band structures from natural CD effect, which limits our understanding of the magnetic material/polymer hybrid structures. This paper aims to introduce a general strategy of averaging out the magnetic linear dichroism (MLD) contributions due to the anisotropic structure and disentangling MCD signal(s) from natural MCD signal(s). We demonstrate the effectiveness of separating MCD from natural MCD using rotational MCD measurement and presented the results of a sample with Co thin film on polymer Scotch tape (unplasticized polyvinyl chloride) glued on a quartz substrate. We demonstrate that the proposed method can be used as an effective tool in disentangling MCD and natural MCD effects, and it opens prospects to study the magnetic material /polymer hybrid systems.

4.
Adv Mater ; 31(40): e1904206, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31423697

RESUMO

Local magnetic imaging at nanoscale resolution is desirable for basic studies of magnetic materials and for magnetic logic and memories. However, such local imaging is hard to achieve by means of standard magnetic force microscopy. Other techniques require low temperatures, high vacuum, or strict limitations on the sample conditions. A simple and robust method is presented for locally resolved magnetic imaging based on short-range spin-exchange interactions that can be scaled down to atomic resolution. The presented method requires a conventional AFM tip functionalized with a chiral molecule. In proximity to the measured magnetic sample, charge redistribution in the chiral molecule leads to a transient spin state, caused by the chiral-induced spin-selectivity effect, followed by the exchange interaction with the imaged sample. While magnetic force microscopy imaging strongly depends on a large working distance, an accurate image is achieved using the molecular tip in proximity to the sample. The chiral molecules' spin-exchange interaction is found to be 150 meV. Using the tip with the adsorbed chiral molecules, two oppositely magnetized samples are characterized, and a magnetic imaging is performed. This method is simple to perform at room temperature and does not require high-vacuum conditions.

5.
Science ; 360(6395): 1331-1334, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29748324

RESUMO

It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations.

6.
Nat Commun ; 8: 14567, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230054

RESUMO

Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm-2, or about 1 × 1025 electrons s-1 cm-2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.

7.
J Synchrotron Radiat ; 22(3): 753-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931093

RESUMO

Magnetic and magneto-optical properties of Pt/Co/Au and Pt/Co/Pt trilayers subjected to 30 keV Ga(+) ion irradiation are compared. In two-dimensional maps of these properties as a function of cobalt thickness and ion fluence, two branches with perpendicular magnetic anisotropy (PMA) for Pt/Co/Pt trilayers are well distinguished. The replacement of the Pt capping layer with Au results in the two branches still being visible but the in-plane anisotropy for the low-fluence branch is suppressed whereas the high-fluence branch displays PMA. The X-ray absorption spectra and X-ray magnetic circular dichroism (XMCD) spectra are discussed and compared with non-irradiated reference samples. The changes of their shapes and peak amplitude, particularly for the high-fluence branch, are related to the modifications of the local environment of Co(Pt) atoms and the etching effects induced by ion irradiation. Additionally, in irradiated trilayers the XMCD measurements at the Pt L2,3-edge reveal an increase of the magnetic moment induced in Pt atoms.

8.
Nano Lett ; 14(11): 6042-9, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25313442

RESUMO

With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA