Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 321(2): E292-E304, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229476

RESUMO

We have generated the transgenic mouse line LTCFDN in which dominant negative TCF7L2 (TCF7L2DN) is specifically expressed in the liver during adulthood. Male but not female LTCFDN mice showed elevated hepatic and plasma triglyceride (TG) levels, indicating the existence of estrogen-ß-cat/TCF signaling cascade that regulates hepatic lipid homeostasis. We show here that hepatic fibroblast growth factor 21 (FGF21) expression was reduced in male but not in female LTCFDN mice. The reduction was not associated with altered hepatic expression of peroxisome proliferator-activated receptor α (PPARα). In mouse primary hepatocytes (MPH), Wnt-3a treatment increased FGF21 expression in the presence of PPARα inhibitor. Results from our luciferase-reporter assay and chromatin immunoprecipitation suggest that evolutionarily conserved TCF binding motifs (TCFBs) on Fgf21 promoter mediate Wnt-3a-induced Fgf21 transactivation. Female mice showed reduced hepatic FGF21 production and circulating FGF21 level following ovariectomy (OVX), associated with reduced hepatic TCF expression and ß-catenin S675 phosphorylation. Finally, in MPH, estradiol (E2) treatment enhanced FGF21 expression, as well as binding of TCF7L2 and ribonucleic acid (RNA) polymerase II to the Fgf21 promoter; and the enhancement can be attenuated by the G-protein-coupled estrogen receptor 1 (GPER) antagonist G15. Our observations hence indicate that hepatic FGF21 is among the effectors of the newly recognized E2-ß-cat/TCF signaling cascade.NEW & NOTEWORTHY FGF21 is mainly produced in the liver. Therapeutic effect of FGF21 analogues has been demonstrated in clinical trials on reducing hyperlipidemia. We show here that Fgf21 transcription is positively regulated by Wnt pathway effector ß-cat/TCF. Importantly, hepatic ß-cat/TCF activity can be regulated by the female hormone estradiol, involving GPER. The investigation enriched our understanding on hepatic FGF21 hormone production, and expanded our view on metabolic functions of the Wnt pathway in the liver.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Via de Sinalização Wnt , Animais , Células Cultivadas , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/metabolismo
2.
Crit Rev Clin Lab Sci ; 58(5): 311-328, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33382006

RESUMO

Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos , Humanos , Fígado , Obesidade
3.
J Nutr ; 150(8): 2101-2111, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470979

RESUMO

BACKGROUND: Dietary polyphenols including anthocyanins target multiple organs. OBJECTIVE: We aimed to assess the involvement of glucagon-like peptide 1 (GLP-1), leptin, insulin and fibroblast growth factor 21 (FGF21) in mediating metabolic beneficial effects of purified anthocyanin cyanidin-3-glucoside (Cy3G). METHODS: Intestinal proglucagon gene (Gcg; encoding GLP-1) and liver Fgf21 expression were assessed in 6-wk-old male C57BL-6J mice fed a low-fat-diet (LFD; 10% of energy from fat), alone or with 1.6 mg Cy3G/L in drinking water for 3 wk [experiment (Exp.) 1; n = 5/group]. Similar mice were fed the LFD or a high-fat diet (HFD; 60% energy from fat) with or without Cy3G for 20 wk. Half of the mice administered Cy3G also received 4 broad-spectrum antibiotics (ABs) in drinking water between weeks 11 and 14, for a total of 6 groups (n = 8/group). Metabolic tolerance tests were conducted between weeks 2 and 16. Relevant hormone gene expression and plasma hormone concentrations were assessed mainly at the end of 20 wk (Exp. 2). RESULTS: In Exp. 1, Cy3G administration increased ileal but not colonic Gcg level by 2-fold (P < 0.05). In Exp. 2, Cy3G attenuated HFD-induced body-weight gain (20.3% at week 16), and improved glucose tolerance (26.5% at week 15) but not insulin tolerance. Although Cy3G had no effect on glucose tolerance in LFD mice, LFD/Cy3G/AB mice showed better glucose tolerance than LFD/Cy3G mice (23%). In contrast, HFD/Cy3G/AB mice showed worse glucose tolerance compared with HFD/Cy3G mice (15%). Beneficial effects of Cy3G in HFD mice were not associated with changes in plasma leptin, insulin or GLP-1 concentrations. However, Cy3G increased hepatic Fgf21 expression in mice in Exp. 1 by 4-fold and attenuated Fgf21 overexpression in HFD mice (Exp. 2, 22%), associated with increased expression of genes that encode FGFR1 and ß-klotho (>3-fold, P < 0.05). CONCLUSIONS: Dietary Cy3G may reduce body weight and exert metabolic homeostatic effects in mice via changes in hepatic FGF21.


Assuntos
Antocianinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Intolerância à Glucose , Glucosídeos/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Gorduras na Dieta/efeitos adversos , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Incretinas/genética , Incretinas/metabolismo , Leptina/metabolismo , Fígado , Masculino , Camundongos , Distribuição Aleatória , Redução de Peso/efeitos dos fármacos
4.
PLoS Biol ; 17(10): e3000444, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589598

RESUMO

The bipartite transcription factor ß-catenin (ß-cat)/T cell factor (TCF), formed by free ß-cat and a given TCF family member, serves as the effector of the developmental Wnt signaling cascade. ß-cat/TCFs also serve as effectors of certain peptide hormones or growth factors during adulthood. We reported that liver-specific expression of dominant-negative Transcription factor 7 like 2 (TCF7L2DN) led to impaired glucose disposal. Here we show that, in this LTCFDN transgenic mouse model, serum and hepatic lipid contents were elevated in male but not in female mice. In hepatocytes, TCF7L2DN adenovirus infection led to stimulated expression of genes that encode lipogenic transcription factors and lipogenic enzymes, while estradiol (E2) treatment attenuated the stimulation, associated with Wnt-target gene activation. Mechanistically, this E2-mediated activation can be attributed to elevated ß-cat Ser675 phosphorylation and TCF expression. In wild-type female mice, ovariectomy (OVX) plus high-fat diet (HFD) challenge impaired glucose disposal and insulin tolerance, associated with increased hepatic lipogenic transcription factor sterol regulatory element-binding protein 1-c (SREBP-1c) expression. In wild-type mice with OVX, E2 reconstitution attenuated HFD-induced metabolic defects. Some of the attenuation effects, including insulin intolerance, elevated liver-weight gain, and hepatic SREBP-1c expression, were not affected by E2 reconstitution in HFD-fed LTCFDN mice with OVX. Finally, the effects of E2 in hepatocytes on ß-cat/TCF activation can be attenuated by the G-protein-coupled estrogen receptor (GPER) antagonist G15. Our study thus expanded the scope of functions of the Wnt pathway effector ß-cat/TCF, as it can also mediate hepatic functions of E2 during adulthood. This study also enriches our mechanistic understanding of gender differences in the risk and pathophysiology of metabolic diseases.


Assuntos
Estradiol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Via de Sinalização Wnt , beta Catenina/genética , Animais , Benzodioxóis/farmacologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Ovariectomia , Quinolinas/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores Sexuais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/metabolismo
5.
Genes (Basel) ; 9(6)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921790

RESUMO

microRNA (miRNA) activity and regulation are of increasing interest as new therapeutic targets. Traditional approaches to assess miRNA levels in cells rely on RNA sequencing or quantitative PCR. While useful, these approaches are based on RNA extraction and cannot be applied in real-time to observe miRNA activity with single-cell resolution. We developed a green fluorescence protein (GFP)-based reporter system that allows for a direct, real-time readout of changes in miRNA activity in live cells. The miRNA activity reporter (MiRAR) consists of GFP fused to a 3′ untranslated region containing specific miRNA binding sites, resulting in miRNA activity-dependent GFP expression. Using qPCR, we verified the inverse relationship of GFP fluorescence and miRNA levels. We demonstrated that this novel optogenetic reporter system quantifies cellular levels of the tumor suppressor miRNA let-7 in real-time in single Human embryonic kidney 293 (HEK 293) cells. Our data shows that the MiRAR can be applied to detect changes in miRNA levels upon disruption of miRNA degradation pathways. We further show that the reporter could be adapted to monitor another disease-relevant miRNA, miR-122. With trivial modifications, this approach could be applied across the miRNome for quantification of many specific miRNA in cell cultures, tissues, or transgenic animal models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA